Forecasting mean monthly maximum and minimum air temperature of Jalandhar district of Punjab, India using seasonal ARIMA model
DOI:
https://doi.org/10.54386/jam.v24i1.777Keywords:
Time series, forecast, Box-Jenkins, air temperature, modelAbstract
The long-term air temperature data series from 1971-2019 was analyzed and used for forecasting mean monthly air temperature at the district level. The Augmented Dickey-Fuller test, Kwiatkowski-Phillips-Schmidt-Shin test, and Mann-Kendall test were employed to test the stationarity and trend of the time series. The mean monthly maximum air temperature did not show any significant variation while an increasing trend of 0.04°C per annum was observed in mean monthly minimum air temperature, which was detrended. Box-Jenkins autoregressive integrated moving–averages were used to forecast the forthcoming 5 years (2020-2024) air temperature in the district Jalandhar of Punjab. The goodness of fit was tested against residuals, the autocorrelation function, and the histogram. The fitted model was able to capture dynamics of the time series data and produce a sensible forecast.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 BALJEET KAUR, NAVNEET KAUR1, K. K. GILL, JAGJEEVAN SINGH, S. C. BHAN, SUNAYAN SAHA
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is a human-readable summary of (and not a substitute for) the license. Disclaimer.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.