Evaluation of CMIP6 GCMs performance and future projection for the Boro and Kharif seasons over the new alluvial zones of West Bengal
DOI:
https://doi.org/10.54386/jam.v26i2.2485Keywords:
Climate model, CMIP6-GCMs, Boro rice, Future projection, Model evaluation, Model rankingsAbstract
Present study examined the overall performance of 12 CMIP6 GCMs for rainfall, maximum and minimum temperatures for rice crop-growing seasons i.e., Boro (January to May) and Kharif (June to October) over the new alluvial zone of West Bengal. A wide range of indices i.e., index of agreement, error indices and bias estimators were utilized to put more confidence on the results. Results indicated that CMIP6 models were able to reproduce observed mean climatology and inter-annual variability of maximum and minimum temperature adequately for both seasons while a smaller number of models (3-4 models) out of a total of 12 GCM-CMIP6 models showed satisfactory performance for rainfall. The ranks assigned to the models revealed that CNRM–ESM2–1 was the best-performing model for Kharif and MRI-ESM2-0 showed the highest skill for Boro. ACCESS-CM2 and MPI-ESM1-2-LR performed worst for Kharif and Boro seasons respectively. Further, CNRM–ESM2–1 and MRI-ESM2-0 were used to project the future climate for Kharif and Boro seasons respectively under both moderate (SSP2-4.5) and extreme scenarios (SSP5-8.5). Higher warming was projected during Boro season than Kharif. Projections revealed increasing rainfall during Kharif season but decreasing rainfall in Boro season in both the moderate and extreme future scenarios.
References
Anil, S., Manikanta, V. & Pallakury A. R. (2021). Unravelling the influence of subjectivity on ranking of CMIP6 based climate models: a case study. Int. J. Climatol., 41 (13): 5998–6016. https://doi.org/10.1002/joc.7164.
Bi, D., Dix, M., Marsland, S.J., O’Farrell, S., Rashid, H.A., Uotila, P., Hirst,A.C. , Kowalczyk, E., Golebiewski, M., Sullivan, A., Yan, H., Hanna, N., Franklin, C., Sun, Z., Vohralik, P., Watterson, I., Zhou, X., Fiedler, R., Collier, M., Ma, Y,. Noonan, J., Stevens, L., Uhe, P., Zhu, H., Hill, R., Harris, C., Griffies, S., and Puri, K. (2012). The ACCESS Coupled Model: Description, Control Climate and Preliminary Validation. Australian Meteorol. Oceanog. J., 63(1): 41-64. https://doi.org/10.22499/2.6301.004
Das, L., Annan, JD., Hargreaves, JC., and Emori, S. (2012). Improvements over three generations of climate model simulations for eastern India. Clim. Res. 51(3): 201-216. http://dx.doi.org/10.3354/cr01064.
Eyring, V., Bony, S., Meehl, GA., Senior, CA., Stevens, B., Stouffer, RJ., and Taylor, KE. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9:1937–1958. https://doi.org/10.5194/gmd-9-1937-2016.
Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A., Abe, M., Ohgaito, R., Ito, A., Yamazaki, D., Okajima, H., Ito, A., Takata, K., Ogochi, K., Watanabe, S., and Kawamiya, M. (2020). Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks, Geosci. Model Dev. 13:2197–2244, https://doi.org/10.5194/gmd-13-2197-2020.
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S., Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jimenéz-de-la Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis, B., Müller, W. A., Nabel, J. E. M. S., Nam, C. C. W., Notz, D., Nyawira, S.-S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T. J., Rast, S., Redler, R., Reick, C. H., Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K. D., Stein, L., Stemmler, I., Stevens, B., von Storch, J.-S., Tian, F., Voigt, A., Vrese, P., Wieners, K.-H., Wilkenskjeld, S., Winkler, A., and Roeckner, E. (2019). Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2. J. Adv. Model. Earth Sys. 11: 998–1038, https://doi.org/10.1029/2018MS001400.
Mukherjee, A., Banerjee, S., Saha, S., Nath, R., Naskar, M. K. and Mukherjee, A (2024). Developing weather-based biomass prediction equation to assess the field pea yield under future climatic scenario. J. Agrometeorol., 26(1): 45–50. https://doi.org/10.54386/jam.v26i1.2461
Séférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A., Colin, J., Decharme, B., Delire, C., Berthet, S., Chevallier, M., and Sénési, S. (2019). Evaluation of CNRM earth system model, CNRM-ESM2-1: Role of earth system processes in present-day and future climate. J. Adv. Model. Earth Sys. 11:4182–4227. https://doi.org/10.1029/2019MS001791.
Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-C., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M. (2020). Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations, Geosci. Model Dev.13:6165–6200, https://doi.org/10.5194/gmd-13-6165.
Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, M., Saito, F., Chikira, M., Watanabe, S., Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O'ishi, R., Yamazaki, D., Suzuki, T., Kurogi, M., Kataoka, T., Watanabe, M., and Kimoto, M. (2019). Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6, Geosci. Model Dev. 12:2727–2765. https://doi.org/10.5194/gmd-12-2727.
Volodin, E.M., Mortikov, E.V., Kostrykin, S.V., Galin, V.Y., Lykossov, V.N., Gritsun, A.S., Diansky, N.A., Gusev, A.V., Iakovlev,N.G., Shestakova, A.A. et al. (2018). Simulation of the modern climate using the INM-CM48 climate model. Russ. J. Numer. Anal. M.l Model. 33(6):367-374. https://doi.org/10.1515/rnam-2018-0032.
Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., Colin, J., Guérémy, J.-F., Michou, M., Moine, M.-P., and Nabat, P. (2019). Evaluation of CMIP6 deck experiments with CNRM-CM6-1. J. Adv. Model. Earth Sys. 11:2177–2213. https://doi.org/10.1029/2019MS001683.
WCRP. (2022). WCRP Coupled Model Intercomparison Project (CMIP). https://www.wcrp-climate.org/wgcm-cmip. Accessed on 12.12.2022.
Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yabu, S., Yoshimura, H., Shindo, E., Mizuta, Ryo., Obata, A., Adachi, Y., and Ishii, M. (2019). The Meteorological Research Institute Earth System Model version 2.0, MRI– ESM2.0: description and basic evaluation of the physical component. J. Meteorol. Soc. Japan. 97(5):931-965. https://doi.org/10.22033/ESGF/CMIP6.636.
Zhang, Jie., Wu, Tongwen., Shi, Xueli., Zhang, Fang., Li, Jianglong., Chu, Min., Liu, Qianxia., Yan, Jinghui., Ma, Qiang., and Wei, Min. (2021). BCC-ESM1 Model Datasets for the CMIP6 Aerosol Chemistry Model Intercomparison Project (AerChemMIP). Adv. Atmos. Sci. 38: 317–328. https://doi.org/10.1007/s00376-020-0151-2.
Downloads
Published
How to Cite
License
Copyright (c) 2024 PURBA GOSWAMI, SARATHI SAHA, LALU DAS, SAON BANERJEE
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This is a human-readable summary of (and not a substitute for) the license. Disclaimer.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.