Comparison of Lasso and stepwise regression technique for wheat yield prediction
DOI:
https://doi.org/10.54386/jam.v21i2.231Keywords:
Weather variables, stepwise regression, lasso regression, cross validation, forecast modelAbstract
Multiple regression approach has been used to forecast the crop production widely. This study has been undertaken to evaluate the performance of stepwise and Lasso (Least absolute shrinkage and selection operator) regression technique in variable selection and development of wheat forecast model for crop yield using weather data and wheat yield for the period of 1984-2015, collected from IARI, New Delhi. Statistical parameters viz. R2, RMSE, and MAPE were 0.81, 195.90 and 4.54 per cent respectively with stepwise regression and 0.95, 99.27, 2.7 percentage, respectively with Lasso regression. Forecast models were validated during 2013-14 and 2014-15. Prediction errors were -8.5 and 10.14 per cent with stepwise and 1.89 and 1.64 percent with the Lasso. This shows that performance of Lasso regression is better than stepwise regression to some extent.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is a human-readable summary of (and not a substitute for) the license. Disclaimer.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.