Development of mathematical models for predicting vapour pressure deficit inside a greenhouse from internal and external climate
DOI:
https://doi.org/10.54386/jam.v20i3.552Keywords:
Greenhouse,, MATLAB,, modeling,, simulink,, VPDAbstract
Vapour pressure deficit (VPD) inside protective structures under cropped conditions significantly affects the plant growth and productivity through its direct relationship with crop transpiration or irrigation management. Thus, monitoring VPD inside greenhouse during crop growth period becomes essential to limit it to a desired range. The present study was undertaken to develop mathematical models for predicting SVP, AVP and VPD inside a greenhouse independently using internal and external climatic parameters as inputs. The root mean square error (RMSE) was obtained in the range of 0.03-0.10 kPa and 0.27-1.03 kPa respectively for the models developed from internal and external climatic parameters as model inputs. The average model efficiency (neff) was computed to be 98.7 per cent, 92.2 per cent and 100.0 per cent respectively for SVP, AVP and VPD when predictions were made using internal climate as
input. Similarly, for the models developed from external climate as model input, neff was worked out to be 96.7, 86.1 and 93.0 per cent for SVP, AVP and VPD respectively. The developed models presented a high degree of precision in predicting SVP, AVP and VPD with both internal and external climatic conditions as model inputs inside a naturally ventilated greenhouse under cucumber crop in soilless media.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is a human-readable summary of (and not a substitute for) the license. Disclaimer.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.