Wheat yield prediction in relation to climatic parameters using statistical model for Ludhiana district of central Punjab
DOI:
https://doi.org/10.54386/jam.v23i1.97Keywords:
Statistical model, climate,, wheat,, regression analysisAbstract
Climate change which is one of the main determinants of agricultural production has started affecting the crop growth pattern and yield from past couple of decades in various agro-climatic zones globally. Under such scenario, the prior forecasting of yield of field crops such as wheat via modeling techniques can help in simplifying the crop production management system starting from farmer’s level to policy makers. The present study was thus undertaken to model the wheat yield of Ludhiana district of Indian Punjab through regression analysis of historical data (1993-2017) of wheat yield and climatic conditions in the area. The developed model was successfully validated with a strong positive correlation (R2=0.81) between predicted and observed data. Both observed and predicted yields were having similar trend with a minimum and maximum absolute differential error of 0.1 and 13.9% respectively. The developed model may serve as a powerful tool for predicting the future yield of wheat crop with available futuristic climatic data of the study area.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is a human-readable summary of (and not a substitute for) the license. Disclaimer.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.