Prediction for rice yield using data mining approach in Ranga Reddy district of Telangana, India
DOI:
https://doi.org/10.54386/jam.v23i2.75Keywords:
Data mining, rice yield prediction, logistic, multi layer perceptron, logistic modelAbstract
In order to explore the possibility of crop estimation, data mining approach being multidisciplinary was followed. The district of Ranga Reddy, Telangana State, India has been chosen for the study and its year wise average yield data of rice and daily weather over a period of 31 years i.e. from 1988-2019 (30th to 47th Standard Meteorological Weeks). Data mining tool WEKA (V3.8.1). Min- Max Normalization technique followed by Feature Selection algorithm, ‘cfsSubsetEval’ was also adopted to improve quality and accuracy of data mining algorithms. Thus, after cleaning and sorting of data, five classifiers viz., Logistic, MLP (Multi Layer Perceptron), J48 Classifier, LMT (Logistic Model Trees) and PART Classifier were employed over the trained data. The results indicated that the function based and tree based models have better performance over rule based model. In case of function based two models examined, viz., Logistic and MLP, the later performed better over Logistic model. Between tree based two models, LMT performed better over J48. Thus, MLP classifier model found to be the best fit model in predicting rice yields as it recorded an accuracy of 74.19 %, sensitivity of 0.742 and precision of 0.743 as compared with other models. The MLP has also achieved the highest F1 score of (0.742) and MCC (0.581).
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is a human-readable summary of (and not a substitute for) the license. Disclaimer.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.