Spatiotemporal Bayes model for estimating the number of hotspots as an indicator of forest and land fires in Kalimantan Island, Indonesia

Authors

  • FADILLAH ROHIMAHASTUTI Department of Statistics and Data Science, IPB University, Bogor, West Java, Indonesia
  • ANIK DJURAIDAH Department of Statistics and Data Science, IPB University, Bogor, West Java, Indonesia
  • HARI WIJAYANTO Department of Statistics and Data Science, IPB University, Bogor, West Java, Indonesia

DOI:

https://doi.org/10.54386/jam.v27i1.2761

Keywords:

Bayesian Spatio-Temporal, Conditional Autoregressive, Hotspot, Forest Fire, negative binomial

Abstract

Forest and land fires often occur on the island of Kalimantan and have a widespread impact on neighboring countries. One indicator of forest and land fires is hotspot. Climate factors play an important role in determining hotspot patterns and trends in a location, which often fluctuate and are difficult to predict. This research aims to predict the number of hotspot spatially and temporally in the next month on Kalimantan Island and analyze the influence of local climate on hotspot events. The Bayesian Conditional Autoregressive method with Integrated Nested Laplace Approximation and optimal weight selection using Getis-Ord G are used to increase prediction accuracy. The distribution of hotspot is assumed to follow the Negative Binomial distribution. The research results show that the best model uses an additive approach and interaction with explanatory variables with a Deviance Information Criterion value of 97,799.8. Predictions from this model have a Root Mean Square Prediction Error of 7.08 and an Average Absolute Prediction Error of 0.63. However, the model still has limitations in predicting extreme events. Climatic factors such as low rainfall, long days without rain, high air temperatures, and low humidity contribute significantly to the increase in the number of hotspot in Kalimantan.

References

Arisman, A. (2020). Analisis Tren Kebakaran Hutan dan Lahan di Indonesia Periode Tahun 2015-2019. J. Sains Teknol. Lingkungan, 6 (1): 1–9. https://doi.org/10.29303/jstl.v6i1.131

Blangiardo, M., and Cameletti, M. (2015). Spatial and Spatio-temporal Bayesian Models with R-INLA. Chichester: John Wiley & Sons Ltd.

Djuraidah, A., Mar'ah, Z., and Anisa, R. (2022). A Bayesian conditional autoregressive with inla: a case study of tuberculosis in java, indonesia. Commun. Math. Biol. Neurosci., 2022: 1-15. https://doi.org/10.28919/cmbn/7709

Djuraidah, A., Rachmawati, R.N., Wigena, A.H., and Mangku, I.W. (2021). Extreme data analysis using spatio-temporal Bayes regression with inla in statistical downscaling model. Intern. J. Innov. Comp. Inform. Control, 17 (1): 259–273. https://doi.org/10.24507/ijicic.17.01.259

Fortin, M.J., and Dale M.R.T. (2005). Spatial Analysis: A Guide for Ecologists. Cambridge University Press.

Giglio, L., Descloitres, J., Justice, C.O., and Kaufman, Y.J. (2003). An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ., 87: 273–282. https://doi.org/10.1016/S0034-4257(03)00184-6

Hayati, M., Wigena, A.H., Djuraidah, A., and Kurnia, A. (2022). The spatio-temporal for the tweedie compound poisson gamma response in statistical downscaling. J. Math. Comput. Sci., 12: 1-17. https://doi.org/10.28919/jmcs/6965

King, R., Morgan, B. J. T., Gimenez, O., and Brooks, S. P. (2010). Bayesian Analysis for Population Ecology. USA: Chapman & Hall/CRC.

Knorr-Held, L. (2000). Bayesian modeling of inseparable space-time variation in disease risk. Stat. Med, 19 (17-18): 2555-67.

Mehta, D., Baweja, P.K., and Aggarwal, R.K. (2019). Developing fire danger model using logistic regression analysis for mid-hills of Himachal Pradesh. J. Agrometeorol., 21 (4): 510–514. https://doi.org/10.54386/jam.v21i4.289

Najib, M.K., Nurdiati, S., and Sopaheluwakan, A. (2022). Copula-based joint distribution analysis of the ENSO effect on the drought indicators over Kalimantan fire-prone areas. Model. Earth Syst. Environ., 8(2): 2817–2826. https://doi.org/10.1007/s40808-021-01267-5

Ntzoufras, I. (2009). Bayesian Modeling Using WinBUGS. New Jersey: Wiley.

Nurdiati, S., Sopaheluwakan, A., Julianto, M.T., Septiawan, P., and Rohimahastuti, F. (2021). Modeling and analysis of the impact of El Nino and IOD to land and forest fire using polynomial and generalized logistic function: case study in South Sumatra and Kalimantan, Indonesia. Model. Earth Syst. Environ., 8(3): 3341–3356. https://doi.org/10.1007/s40808-021-01303-4

Perepolkin, D., Goodrich, B., and Sahlin, U. (2023). The tenets of quantile-based inference in Bayesian models. Comp. Stat. Data Analysis, 187. https://doi.org/10.1016/j.csda.2023.107795

Putra, I.D.G.A., Heryanto, E., Sopaheluwakan, A., Pradana, R.P., and Haryoko, U. (2018). Spatial and temporal distribution of hot spots in Indonesia from fashionable satellites using the grid-ding method. Seminar Nasional Geomatika. 3: 1123-1128. https://doi.org/10.24895/SNG.2018.3-0.1035

Rachmawati, R.N., Djuraidah, A., Wigena, A.H., and Mangku, I.W. (2019). Additive bayes spatio-temporal model with INLA for west Java rainfall prediction. Procedia Comput. Sci., 157: 414–419. https://doi.org/10.1016/j.procs.2019.08.233

Ratnasari, N.R.P., and Dewi, V.R. (2019). Spatio-temporal model for predicting COVID19 cases in Indonesia. Seminar Nasional Official Statistics, 2020(1): 196-209. https://doi.org/10.34123/semnasoffstat.v2020i1.723

Rue, H., Martino, S., and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B., 71: 319–392. https://doi.org/10.1111/j.1467-9868.2008.00700.x

Soroori, E., Moghaddam, A. M., and Salehi, M. (2019). Application of local conditional autoregressive models for development of zonal crash prediction models and identification of crash risk boundaries. Transp. Sci., 15 (2): 1102–1123. https://doi.org/10.1080/23249935.2018.1564801

Spiegelhalter, D.J., Best, N.G., Carlin, B.P., and Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. J.R. Statist. Soc. B, 64 (4): 583. https://doi.org/10.1111/1467-9868.00353

Sukmawati S., Djuraidah, A., Wigena, A.H. (2020). Spatial clustered regression analysis of 2017 getis score indonesian malaria prevalence data. J. Phys. Conf. Ser. https://doi.org/10.1088/1742-6596/1863/1/012043

Downloads

Published

01-03-2025

How to Cite

ROHIMAHASTUTI, F., DJURAIDAH, A., & WIJAYANTO, H. (2025). Spatiotemporal Bayes model for estimating the number of hotspots as an indicator of forest and land fires in Kalimantan Island, Indonesia. Journal of Agrometeorology, 27(1), 27–32. https://doi.org/10.54386/jam.v27i1.2761

Issue

Section

Research Paper

Categories