Performance comparison of linear regression and ANN models in estimating monthly reference evapotranspiration (ET0)

Authors

  • YADVENDRA PAL SINGH Lovely Professional University, Jalandhar,Punjab
  • P.K. SINGH Maharana Pratap Technical University, Udaipur, Rajasthan
  • A.S. TOMAR G.B. Pant University of Agriculture and Technology (GBPUAT), Pantnagar

DOI:

https://doi.org/10.54386/jam.v26i3.2641

References

Bijlwan, A., Pokhriyal, S., Ranjan, R., Singh, R.K., & Jha, A. (2024). Machine learning methods for estimating reference evapotranspiration. J. Agrometeorol., 26(1): 63-68. https://doi.org/10.54386/jam.v26i1.2462

Chauhan, N. S., Kumar, M. and Singh, V. (2022). Comparison of machine learning and traditional models for reference evapotranspiration estimation in various climates. Environ. Model. Softw., 144:105-133.

Ezenne, Nkpouto U., Eyibio, Jane L. Tanner, Felix U. Asoiro, and Sunday E. Obalum Gloria I. (2023). An overview of uncertainties in evapotranspiration estimation techniques. J. Agrometeorol., 25(1): 173–182. https://doi.org/10.54386/jam.v25i1.2014

Ghorbani, M. A. and Kisi, O. (2023). Evaluation of linear and non-linear models for reference evapotranspiration estimation in semi-arid regions. J. Hydrol. Reg. Stud., 45: 10-12.

Mehdizadeh, S. and Sharma, A. (2023). Comparative analysis of artificial intelligence-based models for reference evapotranspiration estimation. Agric. Water Manag., 273:10-20.

Mehta, Rashmi and Vyas Pandey. (2015). Reference evapotranspiration (ETo) and crop water requirement (ETc) of wheat and maize in Gujarat. J. Agrometeorol., 17(1): 107–113. https://doi.org/10.54386/jam.v17i1.984

Moghaddam, M., and Araghinejad, S. (2022). Comparative study of statistical and machine learning methods for ET0 estimation in different climates. J. Hydrol., 610: 127-133

Downloads

Published

01-09-2024

How to Cite

SINGH, Y. P., SINGH, P., & A.S. TOMAR. (2024). Performance comparison of linear regression and ANN models in estimating monthly reference evapotranspiration (ET0). Journal of Agrometeorology, 26(3), 383–386. https://doi.org/10.54386/jam.v26i3.2641

Issue

Section

Short Communication

Categories