Long-term response of rainfed sorghum to diverse growing environments and optimal sowing window at Coimbatore


  • AMMAIYAPPAN A. Department of Agronomy, Tamil Nadu Agricultural University, Coimbatore - 641003, Tamil Nadu, India
  • V. GEETHALAKSHMI Vice chancellor, Tamil Nadu Agricultural University, Coimbatore-641003, Tamil Nadu https://orcid.org/0000-0003-1631-121X
  • K. BHUVANESWARI Centre for Agricultural and Rural Development Studies, Tamil Nadu Agricultural University, Coimbatore - 641003, Tamil Nadu, India
  • M.K. KALARANI Director Crop Management, Tamil Nadu Agricultural University, Coimbatore - 641003, Tamil Nadu, India
  • N. THAVAPRAKAASH Coconut Research Station, Tamil Nadu Agricultural University, Aliyarnagar - 642101, Tamil Nadu, India
  • M. PRAHADEESWARAN Department of Agricultural Economics, Tamil Nadu Agricultural University, Coimbatore - 641003, Tamil Nadu, India




Rainfed sorghum, CERES-Sorghum, Sowing windows, Automatic planting, Elevated temperature


Rainfed sorghum production is profoundly vulnerable to climate variability. Sowing the crop at an appropriate time could be one of the most crucial climate-resilient options to improve the yield. The well-calibrated and validated CERES-Sorghum model was employed to study the rainfed sorghum response to varied environments over the long term (1983–2021) and to determine the optimum sowing window at Coimbatore, Tamil Nadu. The CERES-Sorghum model was used for automatic-planting with a different minimum threshold of 50,60,70 and 80 percent soil water content at 15 cm soil depth under various sowing windows from 1stSeptember to 13th October at a 7-day interval. The model results of automatic planting event indicated the best performance of 1st September sowing window at 50 percent soil water content over 39 years under semi-arid environment. The temperature rise of 1˚C exhibited no significant influence on sorghum grain yields at all sowing windows and a slight reduction in yield was observed at an elevated 2˚C temperature. A further rise in temperature reduced the yield drastically on September month sowings. Across the sowing window, first week sowing window (1st to 7th September) yield was higher under current climatic conditions. The yield of 1st September sowing window remained higher in the elevated temperature conditions as well as in both deficit and excess rainfall conditions than other sowings. In current and future climatic conditions, 1st September sowing window would be the best sowing time to mitigate climate risk in rainfed sorghum.


Adak, S., Mandal, N., Mukhopadhyay, A., Maity, P.P., Sen, S. (2023). Current State and Prediction of Future Global Climate Change and Variability in Terms of CO2 Levels and Temperature. In: Naorem, A., Machiwal, D. (eds) Enhancing Resilience of Dryland Agriculture Under Changing Climate. Springer, Singapore. https://doi.org/10.1007/978-981-19-9159-2_2.

Affoh, R., Zheng, H., Zhang, X., Yu, W. and Qu, C. (2022). Influences of Meteorological Factors on Maize and Sorghum Yield in Togo, West Africa. Land, 12(1), 123.

Akinseye, F. M., Ajeigbe, H. A., Kamara, A. Y., Omotayo, A. O., Tofa, A. I. and Whitbread, A. M. (2023). Establishing optimal planting windows for contrasting sorghum cultivars across diverse agro-ecologies of north-eastern Nigeria: a modelling approach. Agron., 13(3), 727.

Amouzou, K. A., Naab, J. B., Lamers, J. P. A. and Becker, M. (2018). CERES-Maize and CERES-Sorghum for modeling growth, nitrogen and phosphorus uptake, and soil moisture dynamics in the dry savanna of West Africa. Field Crops Res., 217, 134–149.

Anbazhagan, K., Voorhaar, M., Kholová, J., Chadalavada, K., Choudhary, S., Mallayee, S. and Selvaraj, A. (2022). Dual-Purpose Sorghum: A Targeted Sustainable Crop-Livestock Intervention for the Smallholder Subsistence Farming Communities of Adilabad, India. Front. Sustain. Food Syst., 6, 742909.

Chadalavada, K., Gummadi, S., Kundeti, K. R., Kadiyala, D. M., Deevi, K. C., Dakhore, K. K. and Thiruppathi, S. K. (2021). Simulating potential impacts of future climate change on post-rainy season sorghum yields in India. Sustainability, 14(1), 334.

Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R. and Chhetri, N. (2014). A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change., 4(4), 287-291.

Elbasiouny, H., El-Ramady, H., Elbehiry, F., Rajput, V. D., Minkina, T. and Mandzhieva, S. (2022). Plant nutrition under climate change and soil carbon sequestration. Sustainability, 14(2), 914.

Faranda, D., Bourdin, S., Ginesta, M., Krouma, M., Noyelle, R., Pons, F. and Messori, G. (2022). A climate-change attribution retrospective of some impactful weather extremes of 2021. Weather & Clim. Dyn., 3(4), 1311-1340.

Gohain, G. B., Singh, K. K., Singh, R. S., Dakhore, K. K. and Ghosh, K. (2022). Application of CERES-sorghum crop simulation model DSSAT v4. 7 for determining crop water stress in crop phenological stages. Model. Earth Syst. & Environ., 8(2), 1963-1975.

Haig, S. M., Murphy, S. P., Matthews, J. H., Arismendi, I. and Safeeq, M. (2019). Climate-altered wetlands challenge waterbird use and migratory connectivity in arid landscapes. Sci. Rep., 9(1), 4666.

Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann, N. I., McLean, G. and Keating, B. A. (2014). APSIM–evolution towards a new generation of agricultural systems simulation. Environ Model Softw., 62, 327-350.

Loague, K. and Green, R. E. (1991). Statistical and graphical methods for evaluating solute transport models: overview and application. J. Contam. Hydrol., 7(1-2), 51-73.

Nagesh Kumar, M. V., Ramya, V., Govindaraj, M., Dandapani, A., Maheshwaramma, S., Ganapathy, K. N. and Jagadeeshwar, R. (2022). India’s rainfed sorghum improvement: Three decades of genetic gain assessment for yield, grain quality, grain mold and shoot fly resistance. Front. Plant Sci, 13, 1056040.

Prasad, P. V., Boote, K. J. and Allen Jr, L. H. (2006). Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric. For. Meteorol., 139(3-4), 237-251.

Praveen, B. and Sharma, P. (2019). A review of literature on climate change and its impacts on agriculture productivity. J. Public Aff., 19(4), e1960.

Rai, S. K., Kumar, S. and Chaudhary, M. (2021). Detection of annual and seasonal temperature variability and change using non-parametric test-A case study of Bundelkhand region of central India. J. Agrometeorol., 23(4), 402-408. https://doi.org/10.54386/jam.v23i4.144

Rajkumar, R., Shaijumon, C. S., Gopakumar, B. and Gopalakrishnan, D. (2020). Extreme rainfall and drought events in Tamil Nadu, India. Climate Res., 80(3), 175-188.

Singh, P. (2023). Crop models for assessing impact and adaptation options under climate change. J. Agrometeorol., 25(1), 18-33. https://doi.org/10.54386/jam.v25i1.1969

Vishnoi, L., Kumar, A., Kumar, S., Sharma, G., Baxla, A. K., Singh, K. K. and Bhan, S. C. (2020). Weather based crop insurance for risk management in agriculture. J. Agrometeorol., 22(2), 101-108. https://doi.org/10.54386/jam.v22i2.149

Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R. and Rowe, C. M. (1985). Statistics for the evaluation and comparison of models. J. Geophys. Res. Oceans., 90 (C5), 8995-9005.

Yadav, M. K., Singh, R. S., Singh, K. K., Mall, R. K., Patel, C. B., Yadav, S. K. and Singh, M. K. (2015). Assessment of climate change impact on productivity of different cereal crops in Varanasi, India. J. Agrometeorol., 17(2), 179-184. https://doi.org/10.54386/jam.v17i2.1000




How to Cite

AMMAIYAPPAN A., V. GEETHALAKSHMI, K. BHUVANESWARI, M.K. KALARANI, N. THAVAPRAKAASH, & M. PRAHADEESWARAN. (2023). Long-term response of rainfed sorghum to diverse growing environments and optimal sowing window at Coimbatore. Journal of Agrometeorology, 25(4), 532–538. https://doi.org/10.54386/jam.v25i4.2362

Most read articles by the same author(s)