Assessment of AquaCrop model for simulating Baby corn (Zea mays L.) growth and productivity under different sowing windows and crop geometries

Authors

  • SANKAR T. Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore-03, Tamilnadu, India https://orcid.org/0000-0003-4370-6049
  • SP. RAMANATHAN Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore-03, Tamilnadu, India
  • S. KOKILAVANI Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore-03, Tamilnadu, India
  • K. CHANDRAKUMAR Department of Renewable Energy, Tamil Nadu Agricultural University, Coimbatore-03, Tamilnadu, India,
  • M.K. KALARANI Director Crop Management, Tamil Nadu Agricultural University, Coimbatore-03, Tamilnadu, India,

DOI:

https://doi.org/10.54386/jam.v25i2.2119

Keywords:

Baby corn, Calibration,, Crop geometries, FAO AquaCrop, Sowing windows, Validation

Abstract

The experiments were conducted at Agro Climate Research Centre, TNAU, Coimbatore. Calibration and validation of AquaCrop model was done using Winter and Kharif, 2022 data. Calibration showed that AquaCrop accurately simulated the canopy cover by low RMSE≤13.1%, good E≤0.76, high d≤0.94 and high R2 values ≥0.98 and biomass development by low RMSE≤13.2%, high E≤0.92, good d≤0.68 and high R2 values ≥0.95. During calibration, model well-simulated the CC under second sowing (D2) and biomass under third sowing (D3). Validation showed almost good fit of CC by low RMSE≤22.0%, good E≤0.68, high d≤0.84 and high R2 values ≥0.97 and biomass development with low RMSE≤7.1%, good E≤0.66, good d≤0.60 and high R2 values ≥0.98. During Validation, model well-simulated the CC and biomass under third sowing (D3). Model showed good fit of yield during first sowing window (D1) with a less deviation for both calibration and validation (15.6% and 5.8% respectively). From the result it could be concluded that sowing windows influence on baby corn production was accurately simulated using AquaCrop during calibration (R2=0.94) and validation (R2=0.98). Hence, AquaCrop proved to be a feasible tool for maximizing the Baby corn yield under different sowing windows.

References

Abedinpour, M., Sarangi, A., Rajput, T. B. S., Singh, M., Pathak, H., and Ahmad, T. (2012). Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agric. Water Manage., 110: 55-66.

Abrha, B., Delbecque, N., Raes, D., Tsegay, A., Todorovic, M., Heng, L. E. E., and Deckers, S. (2012). Sowing strategies for barley (Hordeum vulgare L.) based on modelled yield response to water with AquaCrop. Experiment. Agric., 48(2):252-271.

Ahmadi, S. H., Mosallaeepour, E., Kamgar-Haghighi, A. A., and Sepaskhah, A. R. (2015). Modeling maize yield and soil water content with AquaCrop under full and deficit irrigation managements. Water Resources Manage., 29: 2837-2853.

Balvanshi, A. and Tiwari, H.L. (2019). Mitigating future climate change effects on wheat and soybean yield in central region of Madhya Pradesh by shifting sowing date. J. Agrometeorol., 21(4): 468-473. https://doi.org/10.54386/jam.v21i4.282

Bello, Z. A., and Walker, S. (2016). Calibration and validation of AquaCrop for pearl millet (Pennisetum glaucum). Crop and Pasture Sci., 67(9), 948-960.

Dar, E. A., Brar, A. S and Yousuf, A. (2018). Growing degree days and heat use efficiency of wheat as influenced by thermal and moisture regimes. J. Agrometeorol., 20(2): 168-170. https://doi.org/10.54386/jam.v20i2.535

Das, S., Ghosh, G., Kaleem, M. D., and Bahadur, V. (2008, February). Effect of different levels of nitrogen and crop geometry on the growth, yield and quality of baby corn (Zea mays L.). In Symposium on the Socio-Economic Impact of Modern Vegetable Production Technology in Tropical Asia. 809 (pp. 161-166).

Farahani, H. J., Izzi, G., and Oweis, T. Y. (2009). Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agron., 101(3):469-476.

Flores, F., Nadal, S., Solis, I., Winkler, J., Sass, O., Stoddard, F. L., and Rubiales, D. (2012). Faba bean adaptation to autumn sowing under European climates. Agron. Ssust. Develop., 32: 727-734.

García‐Vila, M., Fereres, E., Mateos, L., Orgaz, F., and Steduto, P. (2009). Deficit irrigation optimization of cotton with AquaCrop. Agron., 101(3): 477-487.

Heng, L. K., Hsiao, T., Evett, S., Howell, T., and Steduto, P. (2009). Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agron., 101(3): 488-498.

Hsiao, T. C., Heng, L., Steduto, P., Rojas‐Lara, B., Raes, D., and Fereres, E. (2009). AquaCrop the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron., 101(3): 448-459.

Jin, X. L., Feng, H. K., Zhu, X. K., Li, Z. H., Song, S. N., Song, X. Y., ... and Guo, W. S. (2014). Assessment of the AquaCrop model for use in simulation of irrigated winter wheat canopy cover, biomass, and grain yield in the North China Plain. PloS one, 9(1), e86938.

Kumar, R., Bohra, J. S., Kumawa, N., and Singh, A. K. (2015). Fodder yield, nutrient uptake and quality of baby corn (Zea mays L.) as influenced by NPKS and Zn fertilization. Res. Crops, 16 (2).

Lee, S. K., and Dang, T. A. (2020). Assessment of efficient crop planting calendar for cassava crops using the FAO-Aqua crop model. J. Agrometeorol., 22(1): 83-85. https://doi.org/10.54386/jam.v22i1.132

Maddonni, G. A., Cirilo, A. G., and Otegui, M. E. (2006). Row width and maize grain yield. Agron., 98(6): 1532-1543.

Matthews, P., McCaffery, D., and Jenkins, L. (2018). Winter crop variety sowing guide 2018 (pp. 6-32). NSW Department of Primary Industries.

Nash, J. E., and Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. J. Hydro., 10(3): 282-290.

Nyathi, M. K., Van Halsema, G. E., Annandale, J. G., and Struik, P. C. (2018). Calibration and validation of the AquaCrop model for repeatedly harvested leafy vegetables grown under different irrigation regimes. Agric. Water Manage., 208:107-119.

Paredes, P., de Melo-Abreu, J. P., Alves, I., and Pereira, L. S. (2014). Assessing the performance of the FAO AquaCrop model to estimate maize yields and water use under full and deficit irrigation with focus on model parameterization. Agric. Water Manage., 144:81-97.

Salemi, H., Soom, M. A. M., Mousavi, S. F., Ganji, A., Lee, T. S., Yusoff, M. K., and Verdinejad, V. R. (2011). Irrigated Silage Maize Yield and Water Productivity Response to Deficit Irrigation in an Arid Region. Polish J. Environ. Studies, 20(5).

Statista, (2023). Online available at: India: corn production volume 2023 | Statista.

Trombetta, A., Iacobellis, V., Tarantino, E., and Gentile, F. (2016). Calibration of the AquaCrop model for winter wheat using MODIS LAI images. Agric. Water Manage., 164: 304-316.

Watson, D. J. (1947). Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Annals Botany, 11(41): 41-76.

Wiersma, J. V., and Bailey, T. B. (1975). Estimation of leaflet, trifoliolate, and total leaf areas of soybeans 1. Agron., 67(1):26-30.

Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bull. American Meteorol. Soc., 63(11):1309-1313.

Zeleke, K. T. (2019). AquaCrop calibration and validation for Faba Bean (Vicia faba L.) under different agronomic managements. Agron., 9(6):320.

Zeleke, K. T., Luckett, D., and Cowley, R. (2011). Calibration and testing of the FAO AquaCrop model for canola. Agron., 103(6): 1610-1618.

Downloads

Published

25-05-2023

How to Cite

SANKAR T., SP. RAMANATHAN, S. KOKILAVANI, K. CHANDRAKUMAR, & M.K. KALARANI. (2023). Assessment of AquaCrop model for simulating Baby corn (Zea mays L.) growth and productivity under different sowing windows and crop geometries. Journal of Agrometeorology, 25(2), 280–286. https://doi.org/10.54386/jam.v25i2.2119

Most read articles by the same author(s)