Wheat yield prediction based on weather parameters using multiple linear, neural network and penalised regression models
DOI:
https://doi.org/10.54386/jam.v24i1.1002Keywords:
Wheat yield prediction, stepwise multiple linear regression, principal components analysis, artificial neural network, least absolute shrinkage and selection operator, elastic netAbstract
Wheat yield production is largely attributed by weather parameters. Model developed by multiple linear, neural network and penalised regression techniques using weather data have the potential to provide reliable, timely and cost-effective prediction of wheat yield. Wheat yield data and weather parameter during crop growing period (46th to 15th SMW) for more than 30 years were collected for study area and model was developed using stepwise multiple linear regression (SMLR), principal component analysis (PCA) in combination with SMLR, artificial neural network (ANN) alone and in combination with PCA, least absolute shrinkage and selection operator (LASSO) and elastic net (ENET) techniques. Analysis was carried out by fixing 70% of the data for calibration and remaining dataset for validation. On examining these models, LASSO and elastic net are performing excellent having nRMSE value less than 10 % for four out of five location and good for one location, because of prevention in over fitting and reducing regression coefficient by penalization.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 K. S. ARAVIND, ANANTA VASHISTH, P. KRISHANAN, B.DAS
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is a human-readable summary of (and not a substitute for) the license. Disclaimer.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.