Weather based fuzzy regression models for prediction of rice yield
DOI:
https://doi.org/10.54386/jam.v20i4.569Keywords:
Fuzzy linear regression, multiple linear regression, IC values, SSE, SST SSRAbstract
Fuzzy regression models for forecasting rice yield in Kanpur district were developed and compared with the weather indices-based regression model. For this, weekly (23-35 SMW) weather data (1971, 1973-2011) were utilized. Significant variables in fuzzy approach were selected based on index of confidence (IC) and adequacy of models was compared with the weather indices-based regression
models. It was found that variables such as total accumulation of minimum temperature, weighted interaction of bright sunshine hours and rainfall, weighted interaction of minimum and maximum temperature, unweighted interaction of maximum temperature and relative humidity in morning and weighted interaction of relative humidity in morning and evening respectively, are significant based on their IC and SSE (sum of square error) values. The validations of models were also attempted for three years (2008-09, 2010-11 and 2011-2012).This study also reveals that the parameters for adequacy of models for linear regression models vis-a-vis their fuzzy counterparts are much higher for all values of fitness criterion (h). Thus, fuzzy regression methodology is more efficient than linear regression technique.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is a human-readable summary of (and not a substitute for) the license. Disclaimer.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.