Remote sensing based yield estimation of wheat crop at farm scale: A case study of Badsu village of Alwar district, Rajasthan

Authors

  • SUDESH SINGH CHOUDHARY Department of Civil Engineering, Malaviya National Institute of Technology Jaipur; National Institute of Hydrology, Roorkee
  • MAHESH KUMAR JAT Department of Civil Engineering, Malaviya National Institute of Technology Jaipur

DOI:

https://doi.org/10.54386/jam.v27i4.3093

Keywords:

Crop yield, Vegetation Indices, Sentinel 2, Wheat crop, Spearman correlation, MLR model

Abstract

Accurate wheat yield estimation at the farm scale is crucial for food security, market strategies, trade planning, and storage decisions. However, predicting crop production using remote sensing at farm scale presents significant challenges. This research aimed to develop a field-scale wheat yield prediction model using multi-temporal vegetation indices derived from Sentinel-2 MSI imagery for the rabi seasons of 2018–19 and 2019–20 from Badsu village in Alwar district, Rajasthan. Vegetation indices derived from cloud-free Sentinel-2 images spanning the crop growth cycle were processed to generate multiple vegetation indices, grouped into greenness, chlorophyll content, and dryness indicators. Spearman’s rank correlation (ρ) assessed relationships between indices and wheat yield across various phenological stages and their combinations. Linear and multiple linear regression (MLR) models were developed using the most significant indices. Findings indicate that Wide Dynamic Range Vegetation Index (WDRVI), Normalized Green-Red Difference Index (NGRDI), and Normalized Difference Water Index-2 (NDWI2), representing greenness, chlorophyll, and water stress, respectively, exhibited strong correlations with yield, except during harvesting and crown root initiation. The best-performing model achieved an RMSE of 0.47 tons/ha and an R² of 0.74, demonstrating the effectiveness of remote sensing indices for precise wheat yield estimation at the field level in diverse agricultural Conditions. 

References

Adedeji, O., Olusola, A., James, G., Shaba, H. A., Orimoloye, I. R., Singh, S. K., and Adelabu, S. (2020). Early warning systems development for agricultural drought assessment in Nigeria. Environ. Monit. Assess., 192: 1-21.

Benedetti, R. and Rossini, P., (1993). On the use of NDVI profiles as a tool for agricultural statistics: the case study of wheat yield estimate and forecast in Emilia Romagna. Remote Sens. Environ., 45(3):.311-326.

Bolton, D.K. and Friedl, M.A., (2013). Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. Forest Meteorol., 173:74-84.

Du, X., Zhu, J., Xu, J., Li, Q., Tao, Z., Zhang, Y., Wang, H. and Hu, H. (2025). Remote sensing-based winter wheat yield estimation integrating machine learning and crop growth multi-scenario simulations. Intern. J. Digital Earth, 18(1):2443470.

Elders, A., Carroll, M. L., Neigh, C. S., D'Agostino, A. L., Ksoll, C., Wooten, M. R., and Brown, M. E. (2022). Estimating crop type and yield of small holder fields in Burkina Faso using multi-day Sentinel-2. Remote Sensing Appl.: Soc. Environ., 27: 100820.

Gitelson, A., and M.N. Merzlyak. (1994). Quantitative estimation of chlorophyll-A using reflectance spectra-Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol., B 22:247–252. doi:10.1016/1011-1344(93)06963-4

Gitelson, A.A. (2004). Wide Dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol., 161: 165–173.

Gitelson, A.A., A. Viña, T.J. Arkebauer, D.C. Rundquist, G. Keydan, and B. Leavitt. (2003). Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett., 30(5):1248–1253. doi:10.1029/2002GL016450

Goswami, S., Choudhary, S. S., Chatterjee, C., Mailapalli, D. R., Mishra, A., and Raghuwanshi, N. S. (2021). Estimation of nitrogen status and yield of rice crop using unmanned aerial vehicle equipped with multispectral camera. J. Appl. Remote Sens., 15(4): 042407-042407.

Hayes, M.J. and Decker, W.L., (1996). Using NOAA AVHRR data to estimate maize production in the United States Corn Belt. Remote Sens., 17(16):3189-3200.

Huete, A.R (1988). A soil-adjusted vegetation index (SAVI). Remote Sens. Environ., 25:295-309.

Jhajharia, K. (2025). Wheat yield prediction of Rajasthan using climatic and satellite data and machine learning techniques. J. Agrometeorol., 27(1): 63-66. https://doi.org/10.54386/jam.v27i1.2807

Khaki, S., and Wang, L. (2019). Crop yield prediction using deep neural networks. Front. Plant Sci., 10: 621.

Kumar, D. A., Neelima, T. L., Srikanth, P., Devi, M. U., Suresh, K., and Murthy, C. S. (2022). Maize yield prediction using NDVI derived from Sentinal 2 data in Siddipet district of Telangana state. J. Agrometeorol., 24(2): 165-168. https://doi.org/10.54386/jam.v24i2.1635

Kumar, P., Prasad, R., Gupta, D.K., Mishra, V.N., Vishwakarma, A.K., Yadav, V.P., Bala, R., Choudhary, A. and Avtar, R. (2018). Estimation of winter wheat crop growth parameters using time series Sentinel-1A SAR data. Geocarto Intern., 33(9):942-956.

Lonare, A., Maheshwari, B., and Chinnasamy, P. (2022). Village level identification of sugarcane in Sangali, Maharashtra using opensource data. J. Agrometeorol., 24(3): 249-254. https://doi.org/10.54386/jam.v24i3.1688

Misra, G., Cawkwell, F., and Wingler, A. (2020). Status of phenological research using Sentinel-2 data: A review. Remote Sens., 12(17): 2760.

Murthy, C. S., Sai, M. S., Kumari, V. B., Prakash, V. S., and Roy, P. S. (2008). Study of crop condition and assessment of agricultural drought in rabi season using IRS–AWiFS images. J. Agrometeorol., 10(1): 19-26. https://doi.org/10.54386/jam.v10i1.1164

Patel, N. R., Pokhariyal, S., and Singh, R. P. (2023). Advancements in remote sensing-based crop yield modelling in India. J. Agrometeorol., 25(3): 343-351. https://doi.org/10.54386/jam.v25i3.2316

Sisheber, B., Marshall, M., Mengistu, D., and Nelson, A. (2024). The influence of temporal resolution on crop yield estimation with Earth Observation data assimilation. Remote Sens. Appl.: Soc. Environ., 36: 101272.

Van Klompenburg, T., Kassahun, A. and Catal, C. (2020). Crop yield prediction using machine learning: A systematic literature review. Comp. Electron. Agric., 177:105709.

Xiao, W. (2019). December. Novel online algorithms for nonparametric correlations with application to analyze sensor data. In 2019 IEEE Intern. Conf. Big Data, (404-412). DOI: 10.1109/BigData47090.2019.9006483.

Downloads

Published

01-12-2025

How to Cite

CHOUDHARY, S. S., & JAT, M. K. (2025). Remote sensing based yield estimation of wheat crop at farm scale: A case study of Badsu village of Alwar district, Rajasthan . Journal of Agrometeorology, 27(4), 407–414. https://doi.org/10.54386/jam.v27i4.3093