Evaluation of empirical methods for estimating reference evapotranspiration in Central High Lands and Arid Western Lowlands of Eritrea

Authors

  • T. W. GHEBRETNSAE Department of Environmental Management, Institute of Environmental Engineering, RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
  • E. S. MOHAMED Department of Environmental Management, Institute of Environmental Engineering, RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
  • A. B. BOKRE Ministry of Agriculture, Keren, Asmara, Eritrea
  • T. TESFAY Department of Land Resources and Environment, Hamelmalo Agricultural College, Eritrea
  • W. OGBAZGHI Department of Land Resources and Environment, Hamelmalo Agricultural College, Eritrea

DOI:

https://doi.org/10.54386/jam.v27i3.3073

Keywords:

Cumulative Performance Index (CPI), Reference evapotranspiration (ETo), FAO56-PM, Hargreaves-Samani, Blaney-Criddle, Schendel

Abstract

FAO Penman-Monteith (FAO56-PM) method remains difficult to implement across Eritrea due to severe shortages of standardized meteorological data. This study evaluated the accuracy of five alternative empirical methods by comparing them with the FAO56-PM model using established performance metrics (R², RRMSE, NSE, %MBE, and MAPE). Cumulative Performance Index (CPI) was used to determine the overall performances of five alternative ETo methods. The study identified the modified Hargreaves-Samani (CPI=3.6), Romanenko (CPI=3), and Schendel (CPI=2.6) methods as the most viable simplified alternatives for the data-scarce Central Highlands. However, no method proved optimal for the Arid Western Lowlands. Hargreaves-Samani and Blaney-Criddle methods performed poorly, with combined CPI values of 1.7 and 1.4, respectively. The findings suggest that the modified Hargreaves-Samani and Romanenko methods can effectively replace the FAO56-PM model for estimating crop water requirements in both irrigated and rainfed agricultural systems across all crop types in the Central Highlands. However, the study underscores the critical need for rigorous local calibration and validation of the Hargreaves-Samani, Blaney-Criddle, and Schendel methods to enhance their accuracy.

References

Abdelraouf, R. E., El-Shawadfy, M. A., Bakry, A. B., Abdelaal, H. K., El-Shirbeny, M. A., Ragab, R., and Belopukhov, S. L. (2024). Estimating ETO and scheduling crop irrigation using Blaney–Criddle equation when only air temperature data are available and solving the issue of missing meteorological data in Egypt. BIO Web Conf., 82: 02020. https://doi.org/10.1051/bioconf/20248202020

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements (FAO Irrigation and Drainage Paper No. 56). Food and Agriculture Organization of the United Nations (FAO). https://www.fao.org/3/X0490E/X0490E00.htm

Djaman, K., Balde, A. B., Sow, A., Muller, B., Irmak, S., N’Diaye, M. K., Manneh, B., Moukoumbi, Y. D., Futakuchi, K., and Saito, K. (2015). Evaluation of sixteen reference evapotranspiration methods under Sahelian conditions in the Senegal River Valley. J. Hydrol. Reg. Stud., 3: 139–159. https://doi.org/10.1016/j.ejrh.2015.02.002

Dong, J., Xing, L., Gong, D., Cui, N., Guo, L., Liang, C., Zhao, L., Wang, Z., and Gong, D. (2024). Estimating reference crop evapotranspiration using optimized empirical methods with a novel improved Grey Wolf Algorithm in four climatic regions of China. Agric. Water Manag., 291: 108620. https://doi.org/10.1016/j.agwat.2023.108620

Fessehaye, M., Franke, J., and Brönnimann, S. (2022). Evaluation of satellite-based (CHIRPS and GPM) and reanalysis (ERA5-Land) precipitation estimates over Eritrea. Meteorol. Z., 31(5):401-413. DOI: 10.1127/metz/2022/1111

Hargreaves, G. H., and Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. Appl. Eng. Agric., 1(2), 96–99. https://doi.org/10.13031/2013.26773

Kalekar, S. P., and Krishnamurthy, K. N. (2018). Comparison of temperature-based reference evapotranspiration methods with FAO 56 Penman-Monteith method. Mysore J. Agric. Sci., 52(1): 12-17.

Kumar, S., Kumar, R., Singh, M. K., Yadav, S., Parhi, P. K., and Bardhan, A. (2024). Crop water requirement of rice in different agroclimatic zones of Jharkhand. J. Agrometeorol., 26(2): 233-237. https://doi.org/10.54386/jam.v26i2.2358

Meshram, D. T., Gorantiwar, S. D., Mittal, H. R., and Puronit, R. C. (2010). Comparison of reference crop evapotranspiration methods in western part of Maharashtra state. J. Agrometeorol.,12(1): 44-46. https://doi.org/10.54386/jam.v12i1.1266

MoA. (2012). Ministry of Agriculture Eritrea. Investment potential in agricultural sector in Eritrea: National report.

Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F., and Loumagne, C. (2005). Which potential evapotranspiration input for a lumped rainfall–runoff model? Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. J. Hydrol., 303(1–4): 290–306. https://doi.org/10.1016/j.jhydrol.2004.08.026

Rao, A.K., and Wani, S. P. (2011). Evapotranspiration paradox at a semi-arid location in India. J. Agrometeorol., 13(1):3-8. https://doi.org/10.54386/jam.v13i1.1326

Ravazzani, G., Corbari, C., Morella, S., Gianoli, P., and Mancini, M. (2012). Modified Hargreaves-Samani equation for the assessment of reference evapotranspiration in Alpine River Basins. J. Irrig. Drain. Eng., 138(7): 592–599. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000453

Sabziparvar, A.-A., and Tabari, H. (2010). Regional estimation of reference evapotranspiration in arid and semiarid regions. J. Irrig. Drain. Eng., 136(10): 724–731. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000242

Saikia, U. S., Satapathy, K. K., Goswami, B., and Lama, T. D. (2005). Estimation of PET by empirical models for north eastern hill region of Meghalaya. J. Agrometeorol., 7(2), 265–273. https://doi.org/10.54386/jam.v7i2.855

Sarma, A., and Bharadwaj, K. (2020). Determination of crop-coefficients and estimation of evapotranspiration of rapeseed using lysimeter and different reference evapotranspiration models. J. Agrometeorol., 22(2): 172-178. https://doi.org/10.54386/jam.v22i2.158

Saxena, R., Tiwari, A., Mathur, P., and Chakravarty, N. V. K. (2020). An investigation of reference evapotranspiration trends for crop water requirement estimation in Rajasthan. J. Agrometeorol., 22(4): 449-456. https://doi.org/10.54386/jam.v22i4.447

Tabari, H., Grismer, M. E., and Trajkovic, S. (2011). Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrig. Sci., 31: 107–117. https://doi.org/10.1007/s00271-011-0295-z

Downloads

Published

01-09-2025

How to Cite

GHEBRETNSAE, T. W., E. S. MOHAMED, A. B. BOKRE, T. TESFAY, & W. OGBAZGHI. (2025). Evaluation of empirical methods for estimating reference evapotranspiration in Central High Lands and Arid Western Lowlands of Eritrea. Journal of Agrometeorology, 27(3), 349–354. https://doi.org/10.54386/jam.v27i3.3073