Crop vulnerability and climate adaptation to moisture stress in the semi-arid zones of Senegal

Authors

  • SUJATHA PEETHANI International Centre for Agricultural Research in the Dry Areas, Maadi, Egypt
  • G. KISHORE KUMAR International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
  • AHMED MS KHEIR International Centre for Agricultural Research in the Dry Areas, Maadi, Egypt
  • AJIT GOVIND International Centre for Agricultural Research in the Dry Areas, Maadi, Egypt

DOI:

https://doi.org/10.54386/jam.v27i4.3055

Keywords:

Moisture stress, Rainfall anomaly index, Crop simulation model, Rainfall Probability distribution, Sorghum yield, APSIM

Abstract

Abiotic stressors have a significant impact on crop productivity, with moisture stress being especially important. This study investigates the consequent shifts in sorghum yields in Senegal, using NASA Power and CHIRPS data from 1990 to 2024. Matam, Mbane, Gamadji Sarre, and Yang-Yang were identified as hotspots by the Rainfall Anomaly Index (RAI) with low rainfall, exhibiting only 12–15% rainy days. Precipitation was categorized into Above-Normal (AN) or Below-Normal (BN) using the Rainfall Anomaly Index (RAI; AN if RAI ≥ 0, BN if RAI < 0). Sorghum yields were notably lower during BN years. APSIM model was used to assess the impact of fertilizer doses (40 kg ha-1 and 60 kg ha-1) and sowing dates on yield variations. The results indicate minimal yield fluctuation with increased fertilizer within recommended limits and highlight that reliable rainfall forecasts (80% or greater accuracy) can significantly influence farm-level decision-making. These findings emphasize the crucial role of rainfall variability in agricultural planning and climate adaptation strategies.

References

Akinseye, F. M. A. H. Folorunsho, Ajeigbe, A. Hakeem, and S. O. Agele. (2019). Impacts of rainfall and temperature on photoperiod insensitive sorghum cultivar: model evaluation and sensitivity analysis. J. Agrometeorol., 21(3): 262–269. https://doi.org/10.54386/jam.v21i3.248

Cacho OJ, Moss J, Thornton P, Herrero M, Henderson B, Bodirsky BL, Humpenöder F, Popp A, and Lipper L. (2020). The value of climate-resilient seeds for smallholder adaptation in sub-Saharan Africa. Clim. Change. 162: 1213–1229. https://doi.org/10.1007/s10584-020-02817-z

Chapman S, E Birch C, Pope E, Sallu S, Bradshaw C, Davie J, and John H Marsham. (2020). Impact of climate change on crop suitability in sub-Saharan Africa in parameterized and convection-permitting regional climate models. Environ. Res. Lett. 15(9):094086.

Clarke B, Otto F, Stuart-Smith R, and Harrington L. (2022). Extreme weather impacts of climate change: an attribution perspective. Environ. Res.: Clim.;1(1):012001.

Ebi KL, Vanos J, Baldwin JW, Bell JE, Hondula DM, Errett NA, Katie Hayes, Colleen E Reid, Shubhayu Saha, June Spector, Peter Berry. (2021). Extreme Weather and Climate Change: Population Health and Health System Implications. Annu Rev Public Health., 42:293-315.

Genowefa Blundo-Canto, Andrieu, N., Adam, N. S., Ndiaye, O., and Chiputwa, B. (2021). Scaling weather and climate services for agriculture in Senegal: Evaluating systemic but overlooked effects. Clim. Serv., 22, 100216.

Giller KE, Delaune T, Silva JV, van Wijk M, Hammond J, Descheemaeker K, Gerrie van de Ven, Antonius G. T. Schut, Godfrey Taulya, Regis Chikowo and Jens A. Andersson. (2021). Small farms and development in sub-Saharan Africa: Farming for food, for income or for lack of better options? Food Security, 13(6):1431-54.

Govindaraj, T., Maragatham, N., Ramanathan, S., Geethalakshmi, V., and Kalarani, M. (2023). Calibration and validation of APSIM maize simulation model for different date of sowing. J. Agrometeorol., 25(3): 474–476. https://doi.org/10.54386/jam.v25i3.2212

Gregorio M. D., Fatorelli L, Paavola J, Locatelli B, Pramova E, Nurrochmat DR, Peter H. May, Maria Brockhaus, Intan Maya Sari and Sonya Dyah Kusumadewi. (2019). Multi-level governance and power in climate change policy networks. Global Environ. Change, 54:64-77.

IPCC (2022). Climate Change: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp., doi:10.1017/9781009325844.; 2022.

Kheir AMS, Alrajhi AA, Ghoneim AM, Ali EF, Magrashi A, Zoghdan MG, Abdelkhalik, Sedhom A. M., Fahmy, Ahmed E, Elnashar, Abdelrazek . (2021). Modeling deficit irrigation-based evapotranspiration optimizes wheat yield and water productivity in arid regions. Agric. Manage. Water Qual., 256:107122.

Maluvu, Z., Oludhe, C., Daniel Kisangau, and Jacinta M. Maweu. (2025). Green gram yield projections for Kibwezi east subcounty Kenya using the APSIM model under RCP’s 4.5 and 8.5. J. Agrometeorol., 27(1): 33–37. https://doi.org/10.54386/jam.v27i1.2722

Pandey. Vyas (2023). Climate variability, trends, projections and their impact on different crops: A case study of Gujarat, India. J. Agrometeorol., 25(2): 224–238. https://doi.org/10.54386/jam.v25i2.2151

Sinha, Nishant K., M. Mohanty, J. Somasundaram, R. S. Chaudhary, H. Patra, K. M. Hati, Rana Pratap Singh, Jyoti Kumar Thakur, Jitendra Kumar, Dhiraj Kumar, Alka Rani, A. B. Singh, S K Bal, K. Sammi Reddy, and M. Prabhakar. (2021). Maize productivity analysis in response to climate change under different nitrogen management strategies. J. Agrometeorol., 23(3): 279–285. https://doi.org/10.54386/jam.v23i3.54

Yamusa, A.M. and F. M. Akinseye. (2018). Evaluation of APSIM – Maize model under different sowing dates at Samaru, Nigeria. J. Agrometeorol., 20(3): 206–210. https://doi.org/10.54386/jam.v20i3.545

Downloads

Published

01-12-2025

How to Cite

PEETHANI, S., KUMAR, G. K., KHEIR, A. M., & AJIT GOVIND. (2025). Crop vulnerability and climate adaptation to moisture stress in the semi-arid zones of Senegal. Journal of Agrometeorology, 27(4), 421–428. https://doi.org/10.54386/jam.v27i4.3055