Change in the productive potential of rainfed maize under climate change scenarios in the Lerma–Toluca Sub-basin, Mexico
DOI:
https://doi.org/10.54386/jam.v27i4.3045Keywords:
Greenhouse Gases, General Circulation Models, Representative Concentration Pathways, Global Agroecological ZonesAbstract
Climate change represents a challenge for agricultural production in Mexico, so this research determined the productive potential in the Lerma-Toluca Basin under historical (1991-2020) and future (2050 and 2070) scenarios with RCP 4.5 and 8.5. For the scenarios, temperature and precipitation images were generated using the spline interpolation method of the ANUSPLIN package. The productive potential was estimated based on the agroecological requirements of the crop, classifying the territory as high, medium and unsuitable. The results show that, in the current scenario, medium potential predominates (51.8%) over high potential (17.3%). For the future scenarios with RCP 4.5 in 2050, the medium potential increases 0.69% and the high potential 0.43%; in 2070, the medium potential decreases 0.68% and the high potential increases 1.79%. With RCP 8.5 in 2050, the medium potential decreases by 1.4%, and the high potential increases by 2.16%; in 2070, the medium decreases by 14.96%, and the high potential increases by 13.15%, compared to the historical scenario. Climate change will raise the temperature and reduce precipitation, increasing productive potential; however, extreme weather events can affect production, so adaptation strategies are required to face climate risks and guarantee food security.
References
CONAGUA. (2023). Normales Climatológicas por Estado. Comisión Nacional del Agua. https://smn.conagua.gob.mx/esclimatologia/informacionclimatologica/normalesclimatologicas-por-estado
Cruz-González, A., Arteaga-Ramírez, R., Sánchez-Cohen, I., Soria-Ruiz, J., and Monterroso-Rivas, A. I. (2024). Impactos del cambio climático en la producción de maíz en México. Revista Mexicana de Ciencias Agrícolas, 15(1): https://doi.org/10.29312/remexca.v15i1.3327
Cruz-González, A., Arteaga-Ramírez, R., Monterroso-Rivas, A. I., Sánchez-Cohen, I., Soria-Ruiz, J., and Quevedo-Nolasco, A. (2025). Climate change impacts on the accumulation of growing degree days for corn in central Mexico. J. Agrometeorol., 27(1): 38–42. https://doi.org/10.54386/jam.v27i1.2783
Díaz-Padilla, G., Guajardo-Panes, R. A., Medina-García, G., Sánchez-Cohen, I., Soria-Ruíz, J., Vázquez-Alvarado, J. M. P., Quijano-Carranza, J. Á., Legorreta-Padilla, F., and Ruíz-Corral, J. A. (2012). Potencial productivo de especies agrícolas de importancia socioeconómica en México. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), 8, 1–140. http://www.cmdrs.gob.mx/sesiones/Documents/2012/5_sesion/inifap_estudio.pdf
Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N., and Travers, S. E. (2006). Climate change effects on plant disease: Genomes to ecosystems. Annual Rev. Phytopathol., 44 (February): 489–509. https://doi.org/10.1146/annurev.phyto.44.070505.143420
Getnet, G. T., Bantider Dagnew, A., and Ayal, D. Y. (2023). Spatiotemporal variability and trends of rainfall and temperature in the tropical moist montane ecosystem: Implications to climate-smart agriculture in Geshy watershed, Southwest Ethiopia. Climate Services, 30: 9. https://doi.org/10.1016/j.cliser.2023.100384
Gowtham, R., Bhuvaneshwari, K., Senthil A., Dhasarathan, M., Revi, A., and Bazaz, A. (2020). Impact of global warming (1.5oC) on the productivity of selected C3 and C4 crops across Tamil Nadu. J. Agrometeorol., 22(1): 7–17. https://doi.org/10.54386/jam.v22i1.115
Guo, B., Zhang, J., Meng, X., Xu, T., and Song, Y. (2020). Long-term spatio-temporal precipitation variations in China with precipitation surface interpolated by ANUSPLIN. Sci. Rep., 10(1): 1–17. https://doi.org/10.1038/s41598-019-57078-3
Haris, A. A., Chhabra, V., and Biswas, S. (2010). Rainfall and temperature trends at three representative agroecological zones of Bihar. J. Agrometeorol., 12(1): 37–39. https://doi.org/10.54386/jam.v12i1.1264
Hatfield, J. L., and Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather Climate Extremes, 10: 4–10. https://doi.org/10.1016/j.wace.2015.08.001
INECC. (2022). Guía sobre Escenarios de Cambio Climático para tomadores de decisiones. https://atlasvulnerabilidad.inecc.gob.mx/conten_intro/Guia_de_Escenarios_CC_mar2022.pdf
INEGI. (2019). Cuenca hidrológica Río Lerma 1. Humedales. Informe Técnico. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825188740
IPCC. (2014). Climate Change 2014: Synthesis Report. In R. K. P. and L. A. M. Core Writing Team (Ed.), Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Vol. 218, Issue 2). https://doi.org/10.1016/S0022-0248(00)00575-3
IPCC. (2023): Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 1-34, https://doi.org/10.59327/IPCC/AR6-9789291691647.001
Jasso-Miranda, M., Soria-Ruiz, J., and Antonio-Némiga, X. (2022). Pérdida de superficies cultivadas de maíz de temporal por efecto de heladas en el valle de Toluca. Revista Mexicana de Ciencias Agrícolas, 13(2): 207–222. https://doi.org/10.29312/remexca.v13i2.2587
Lobell, D. B., Schlenker, W., and Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042): 616–620. https://doi.org/10.1126/science.1204531
Manorama, K., Govindakrishnan, P. M., Rawat, S., Ravichandran, G., and Lal, S. S. (2014). Agro ecological zoning and estimation of potential yield of potato in plateau regions of India. J. Agrometeorol., 16(2): 192–194. https://doi.org/10.54386/jam.v16i2.1519
Medina-García, G., Ruiz-Corral, J. A., Rodríguez-Moreno, V. M., Soria-Ruiz, J., Díaz- Padilla, G., and Zarazúa Villaseñor, P. (2017). Efecto del cambio climático en el potencial productivo del frijol en México. Revista Mexicana de Ciencias Agrícolas, 13: 2465–2474. https://doi.org/10.29312/remexca.v0i13.461
Medina-García, G., Echavarría-Cháirez, F. G., Ruiz-Corral, J. A., Rodríguez-Moreno, V. M., Soria-Ruíz, J., and De la Mora-Orozco, C. (2020). Efecto del calentamiento global sobre la producción de alfalfa en México. Revista Mexicana de Ciencias Pecuarias, 11: 34–48. https://doi.org/10.22319/rmcp.v11s2.4686
Patidar, R., Mohanty, M., Sinha, N. K., Gupta, S. C., Somasundaram, J., Chaudhary, R. S., Soliya, R., Hati, K. M., Prabhakar, M., Sammi Reddy, K., Patra, A. K., and Rao Ch. S. (2020). Potential impact of future climate change on maize (Zea mays L.) under rainfed condition in central India. J. Agrometeorol., 22(1): 18–23. https://doi.org/10.54386/jam.v22i1.117
Pendergrass, A. G., and Hartmann, D. L. (2014). Changes in the distribution of rain frequency and intensity in response to global warming. J. Clim., 27(22): 8372–8383. https://doi.org/10.1175/JCLI-D-14-00183.1
Ruiz Corral, J. A., Medina García, G., Ramírez Díaz, J. L., Flores López, H. E., Ramírez Ojeda, G., Manríquez Olmos, J. D., Zarazúa Villaseñor, P., González Eguiarte, D. R., Díaz Padilla, G., and de la Mora Orozco, C. (2011). Cambio climático y sus implicaciones en cinco zonas productoras de maíz en México. Revista Mexicana de Ciencias Agrícolas, 2(spe2): 309–323.
Salinas, J. A., Colorado, G., Montero Martínez, M. J., Maya Magaña, M. E., and Gonzáles Robles, M. (2014). Actualización y divulgación de los nuevos escenarios de Cambio Climático aplicados a México para fortalecer las capacidades nacionales. Informe Final. Instituto Nacional de Ecología y Cambio Climático (INECC), 169.
SECAMPO. (2023). Secretaría del campo del Estado de México. Análisis de Tendencia de la Producción, de los Principales Productos Agrícolas, Florícolas y Pecuarios en el Estado de México (Issue Preliminar 2022).
Shao, J., Wang, Q., Liu, P., Zhao, B.-J., Han, W., Zhang, J., and Ren, B. (2024). The complex stress of waterlogging and high temperature accelerated maize leaf senescence and decreased photosynthetic performance at different growth stages. J. Agron. Crop Sci., https://doi.org/10.1111/jac.12689
Soria-Ruíz, J., and Medina-García, G. (2022a). Escenarios futuros de cambio climático para maíz de temporal en el Estado de México. Revista Tecnológica CEA, 18: www.revistatecnologicacea.mx
Soria-Ruíz, J., and Medina-García, G. (2022b). Potencial productivo del maíz de temporal con escenario actual de cambio climático para el Estado de México. Revista Tecnológica CEA, 18: www.revistateconologicacea.mx
WRB. (2015). Base referencia mundial del recurso suelo 2014, Actualización 2015. Sistema internacional de clasificación de suelos para la nomenclatura de suelos y la creación de leyendas de mapas de suelos. Informes sobre recursos mundiales de suelos 106. In Actualización 2015. https://www.iec.cat/mapasols/DocuInteres/PDF/Llibre59.pdf
Yener, İ. (2023). Development of high-resolution annual climate surfaces for Turkey using ANUSPLIN and comparison with other methods. Atmosfera, 37: 425–444. https://doi.org/10.20937/ATM.53189
Zhang, B., and Zhou, W. (2021). Spatial–temporal characteristics of precipitation and its relationship with land use/cover change on the Qinghai-Tibet plateau, China. Land, 10(3): https://doi.org/10.3390/land10030269
Downloads
Published
How to Cite
License
Copyright (c) 2025 J. E. REYES-ANDRADE, J. SORIA-RUÍZ, H. D. INURRETA-AGUIRRE

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This is a human-readable summary of (and not a substitute for) the license. Disclaimer.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.