Evaluation of water use efficiency and yield on shallot (Allium cepa L.) cultivation under conventional irrigation and sensor-based drip irrigation

Authors

DOI:

https://doi.org/10.54386/jam.v27i3.2997

Keywords:

Shallot, Drip irrigation, Water use efficiency, Pot experiment, Irrigation water requirement, Percolation

Abstract

Water shortage is a critical problem in unirrigated agricultural land in hilly regions, especially during the dry season. Inefficient irrigation practices and a lack of attention to crop water needs exacerbate the water shortage. A pot experiment aimed to evaluate conventional irrigation (CI) and sensor-based drip irrigation (SDI) approach on shallot cultivation in terms of total irrigation, water percolation, yield, and water use efficiency. Results revealed that the total amount of irrigation water in the CI was significantly higher than in the SDI at each growth phase, resulting in higher water percolation throughout the shallot's growth phases in the CI. The irrigation water use efficiency (IWUE) value increased significantly by 87.7% in the SDI compared to the CI, but resulted in a 26.7% yield reduction. This study provides information indicating that CI tends to use excessive amounts of irrigation water, so that it requires innovative water management to be more efficient, leading to an increased yield by using the SDI approach. Irrigation practices considering optimal soil water content at each plant growth phase are essential to improve water use efficiency and prevent excessive water percolation.

References

Allen, R.G., Pereira, L.S., Raes, D. and Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Food and Agriculture Organization of the United Nations. Rome

Ansar, M., Bahrudin, Maemunah and Paiman. (2022). Effect of harvest age and storage duration on viability and vigor of shallot (Allium cepa L.) tubers. Res. Crops., 23(4): 815–821. https://doi.org/10.31830/2348-7542.2022.roc-909

Balittan. 2006. Sifat fisik tanah dan metode analisisnya. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian, Bogor, Indonesia.

Christmann, A., Erwin, G. and Huang, J. (2013). Hydraulic signals in long-distance signaling. Curr. Opin. Plant Biol., 16: 293–300. http://dx.doi.org/10.1016/j.pbi.2013.02.011

Galloway, D. and Burbey, T. (2011). Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol. J., 19: 1459-1486. https://doi.org/10.1007/S10040-011-0775-5

Ghanem, K. Z., Hasham, M. M. A., El-Sheshtawy, A. A., El-Serafy, R. S. and Sheta, M. H. (2022). Biochar Stimulated Actual Evapotranspiration and Wheat Productivity under Water Deficit Conditions in Sandy Soil Based on Non-Weighing Lysimeter. Plants, 11(23): 3346. https://doi.org/10.3390/plants11233346

Hatiye, S. D., Prasad, K. S. H., Ojha, C. S. P. and Adeloye, A. J. (2016). Estimation and Characterization of Deep Percolation from Rice and Berseem Fields Using Lysimeter Experiments on Sandy Loam Soil. J. Hydrol. Eng., 21(5), https://doi.org/10.1061/(asce)he.1943-5584.0001365

Hussain, S., Mubeen, M., Nasim, W., Fahad, S., Ali, M., Ehsan, M. A. and Raza, A. (2023). Investigation of irrigation water requirement and evapotranspiration for water resource management in southern Punjab, Pakistan. Sustainability, 15(3): 1768. https://doi.org/10.3390/su15031768

Ibragimov, N., Evett, S. R., Esanbekov, Y., Kamilov, B. S., Mirzaev, L. and Lamers, J. P. (2007). Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation. Agric. Water Manage., 90(1–2): 112–120. https://doi.org/10.1016/j.agwat.2007.01.016

Ji, Y., Fu, J., Lu, Y. and Liu, B. (2023). Three-dimensional-based global drought projection under global warming tendency. Atmos. Res., 291: 106812. https://doi.org/10.1016/j.atmosres.2023.106812

Kelley, B., Ali, N. and Dong, Y. (2024). Methods to correct temperature-induced changes of soil moisture sensors to improve accuracy. Methods X, 14: 103100. https://doi.org/10.1016/j.mex.2024.103100

Kumar, S., Imtiyaz, M., Kumar, A. and Singh, R. (2007). Response of onion (Allium cepa L.) to different levels of irrigation water. Agric. Water Manage, 89(1–2): 161–166. https://doi.org/10.1016/j.agwat.2007.01.003

Kumar, S., Kumar, R., Singh, M. K., Yadav, S., Parhi, P. K. and Bardhan, A. (2024). Crop water requirement of rice in different agroclimatic zones of Jharkhand. J. Agrometeorol., 26(2): 233–237. https://doi.org/10.54386/jam.v26i2.2358

Merriam, J.L. and Keller, J. (1978) Farm Irrigation System Evaluation: A Guide to Management. Utah State University, Logan, Utah.

Oktavia, A., Widowati, N., Pudjiastuti, A. Q., Praseyorini, N. L., Agastya, N. I. M. I., Cahya, N. U. T. W., and Wilujeng, N. R. (2025). Optimizing water usage for chilli (Capsicum frutescens L.) through drip irrigation using CROPWAT in Malang Regency Indonesia. J. Agrometeorol., 27(1): 114–116. https://doi.org/10.54386/jam.v27i1.2798

Ortiz-Bobea, A., Ault, T. R., Carrillo, C. M., Chambers, R. G. and Lobell, D. B. (2021). Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Change, 11(4): 306–312. https://doi.org/10.1038/s41558-021-01000-1

Payero, J., Qiao, X., Khalilian, A., Mirzakhani-Nafchi, A. and Davis, R. (2017). Evaluating the Effect of Soil Texture on the Response of Three Types of Sensors Used to Monitor Soil Water Status. J. Water Resour. Prot., 09: 566-577. https://doi.org/10.4236/JWARP.2017.96037

Priatri, I. P. (2023). Penentuan kebutuhan dan efisiensi penggunaan air bawang merah dengan irigasi tetes terkendali. Bachelor Thesis (In Bahasa), Universitas Gadjah Mada. Yogyakarta, Indonesia.

Saccon, P. (2017). Water for agriculture, irrigation management. Appl. Soil Ecol., 123: 793–796. https://doi.org/10.1016/j.apsoil.2017.10.037

Sharma, V. and Changade, N. M. (2025). Irrigation water requirement of drip irrigated tomato and capsicum under controlled and open-field environments. J. Agrometeorol., 27(1): 77–81. https://doi.org/10.54386/jam.v27i1.2727

Sharma, V., Changade, N. M., Tarate, S. B., Yadav, K. K. and Yadav, B. (2023). Climatological approaches of irrigation scheduling for growing tomato crop under drip irrigation in sub-tropical region of Punjab. J. Agrometeorol., 25(4): 565–570. https://doi.org/10.54386/jam.v25i4.2269

Wei, X. and Bailey, R. T. (2019). Assessment of system responses in intensively irrigated Stream–Aquifer systems using SWAT-MODFLOW. Water, 11(8): 1576. https://doi.org/10.3390/w11081576

Wing, I. S., De Cian, E. and Mistry, M. N. (2021). Global vulnerability of crop yields to climate change. J. Environ. Econ. Manage., 109: 102462. https://doi.org/10.1016/j.jeem.2021.102462

Woldetsadik, K., Gertsson, U. and Ascard, J. (2004). Response of shallots to moisture stresses in Ethiopia. Acta Hortic., 637: 347–351. https://doi.org/10.17660/actahortic.2004.637.43

Xiao, K., Bai, W. and Wang, S. (2021). Multifactor analysis of calibration and service quality of the soil moisture sensor applied in subgrade engineering. Adv. Mater. Sci. Eng., 2020: 1–9. https://doi.org/10.1155/2021/7548996

Downloads

Published

01-09-2025

How to Cite

TURRODIYAH, A., SANTOSO, B. W., PRIATRI, N. I., RIZQI, F. A., HSIEH, C.-I., SUBEJO, WIDADA, J., & SARTOHADI, J. (2025). Evaluation of water use efficiency and yield on shallot (Allium cepa L.) cultivation under conventional irrigation and sensor-based drip irrigation. Journal of Agrometeorology, 27(3), 273–278. https://doi.org/10.54386/jam.v27i3.2997

Issue

Section

Research Paper

Categories