Millets as a dual-purpose crop for sustainable nutritional and energy security: A comprehensive review
DOI:
https://doi.org/10.54386/jam.v27i2.2892Keywords:
Millets, Nutritional content, Climate resilience, value added products, Health benefits, Carbon footprintAbstract
Millets are multipurpose crops that can grow in diverse climatic conditions and have high nutritional value. However, the nutritional importance and various climatic adaptability of millets are not well recognized. The current review emphasizes the response of millet to climate variability, the significance of value-added products, and the role of millet agro residues. This review paper is a summary of a total of 106 published articles from different database sources. The results revealed that millets are a high source of protein, fat, minerals, and dietary fiber and rich in micronutrients which are used to overcome malnutrition and non-communicable diseases. Foxtail millet uses 257 g of water to produce 1 g of dry biomass as compared to maize (470g) and wheat (510g) indicating its climate resilience. The study also indicates a potential possibility of utilization of millet biomass in the production of bioenergy which in turn promotes the sustainability of renewable energy. Hence, developing schemes such as distributing seeds, fertilizer, pesticides, subsidized credit facilities, and promoting various value-added products are the main options to promote millet for further cultivation and consumption.
References
Abdali, D., Samson, S. E., and Grover, A. K. (2015). How effective are antioxidant supplements in obesity and diabetes? Med. Princ. Pract., 24(3): 201–215. https://doi.org/10.1159/000375305
Ajithkumar, I. P., and Panneerselvam, R. (2014). ROS Scavenging System, Osmotic Maintenance, Pigment and Growth Status of Panicum sumatrense Roth. Under Drought Stress. Cell. Biochem. Biophys., 68(3): 587–595. https://doi.org/10.1007/s12013-013-9746-x
Anagha, K.K. (2023). Millets: Nutritionl importance, health benefits, and bioavailability: A review. Energy, 12(8): 223–227. www.thepharmajournal.com
Amelework, B., Hussien, S., Pangirayi, T., and Mark, L. (2015). Physiological mechanisms of drought tolerance in sorghum, genetic basis and breeding methods: A review. Afr. J. Agric. Res, 10(31): 3029–3040. https://doi.org/10.5897/ajar2015.9595
Ashoka P., Raut, D., Sudeepthi, B., Gawande, K. N., Reddy, Gurrala. S. V., Padhan, S. R., and Panigrahi, C. K. (2023). Millet’s Role as a Climate Resilient Staple for Future Food Security: A Review. Int. J. Environ. Clim. Change, 13(11): 4542–4552. https://doi.org/10.9734/ijecc/2023/v13i113634
Bhatt, D., Rasane, P., Singh, J., Kaur, S., Fairos, M., Kaur, J., Gunjal, M., Mahato, D. K., Mehta, C. M., Avinashe, H., and Sharma, N. (2022). Nutritional advantages of barnyard millet and opportunities for its processing as value-added foods. J. Food Sci. Technol., 60 (11): 2748–2760). Springer. https://doi.org/10.1007/s13197-022-05602-
Bhat, S., Nandini, C., Srinathareddy, S., Jayarame, G., and K., P. (2019). Proso millet (Panicum miliaceum L.)-a climate resilient crop for food and nutritional security: A Review. Environ. Conserv. J., 20(3): 113–124. https://doi.org/10.36953/ECJ.2019.20315
Bhuva, H.M., and Detroja, A.C. (2018). Thermal requirement of pearl millet varieties in Saurashtra region. J. Agrometeorol., 20 (4): 329-331 https://doi.org/10.54386/jam.v20i4.577
Birania, S.,Rohilla, P., Kumar, R., Kumar, N.(2020). Post harvest processing of millets: A review on value added products. Int. J. Chem. Study, 8 (1): 1824-1829. https://doi.org/10.22271/chemi.2020.v8.ilaa.8528
Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., and Bhaskar, T. (2017). Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw, and rice husk. Bioresour. Technol., 237: 57–63. https://doi.org/10.1016/j.biortech.2017.02.046
Bora, P., Ragaee, S., and Marcone, M. (2019). Characterization of several types of millet as functional food ingredients. Int. J. Food Sci. Nutr., 70: 714-724. https://doi.org/10.1080/09637486.2019.1570086
Challa, M., and Aparna, K. (2023). Development of Value -Added Millet Beverage With Foxtail Millet (PKS-22) and Bajar (PBH-1625). Thesis.
Chandel, G., Meena, R. K., Dubey, M., and Kumar, M. (2014). Nutritional properties of minor millets: neglected cereals with potentials to combat malnutrition. Curr. Sci., 107(7), 1109-1111. http://faostat.fao.org/site/339/default.aspx
Chauhan, A., Upadhyay, S., Saini, G., and Senthilkumar, N. (2022). Agricultural Crop Residue Based Biomass in India: Potential Assessment, Methodology and Key Issues. Sustain. Energy Technol., 53. https://doi.org/10.1016/j.seta.2022.102552
Chauhan, E. S., and Sarita. (2018). Effects of processing (germination and popping) on the nutritional and anti-nutritional properties of finger millet (Eleusine coracana). Curr. Res. Nutr. Food. Sci., 6(2):566-572. http://dx.doi.org/10.12944/CRNFSJ.6.2.30
Chu, J., Zhao, H., Liu, Z., Lu, F., Bie, X., Zhang, C. (2019). Improved physicochemical and functional properties of dietary fiber from millet bran fermented by Bacillus Natto. Food Chem., 294(1): 79-86. https://doi.org/10.1016/j.foodchem.2019.05.035
Darshitha, P.P., Ravi. A., Lasya. P., Menon, M., Sivasubramanian, G., Sreekanth, K.M., and Sreedhar, K.M. (2022). Foxtail millet husk as an innovative biomass in the preparation of silica-silver composite with antimicrobial and free radicle scavenging activities. Materials Today: Proceedings, 66: 1830-1836.
Das, I.K., and Rakshit, S. (2016). Millets, Their Importance, and Production Constraints. In I.K. Das & P.G. Padmaja (Eds.), Biotic Stress Resist. Millets, 3-19. https://doi.org/10.1016/B978-0-12-804549-7.00001-9
Dayakar Rao, B., Kandlakunta, B., and Golla, S. D. (2017). Nutritional and Health Benefits of Millets. ICAR_ Indian Institute of Millets Research (IIMR), Rajendranagar, Hyderabad, 112. www.millets.res.in
Deshpande, S. D., and Nishad, P. K. (2021). Technology for Millet Value-Added Products. In Millets Millet Technol., 293–303. https://doi.org/10.1007/978-981-16-0676-2_14
Dey, S., Saxena, A., Kumar, Y., Maity, T., and Tarafdar, A. (2022). Understanding the Antinutritional Factors and Bioactive Compounds of Kodo Millet (Paspalum scrobiculatum) and Little Millet (Panicum sumatrense). J. Food Qual., https://doi.org/10.1155/2022/1578448
Ding, S., Lan, Z., and Fang, S. (2023). Pyrolysis temperature determines the amendment effects of poplar residue-derived biochars on reducing CO2 emission. GCB Bioenergy, 15(8): 1030–1045. https://doi.org/10.1111/gcbb.13080
FAO (2010). Millets and Sorghum in Crop Adaptation Strategies for Drylands. Retrieved from Food and Agriculture Organization. https://www.fao.org/3/i1638e/i1638e03.pdf
FAO (2019). The share of agri-food systems in total greenhouse gas emissions Global, regional and country trends. FAOSTAT analytical brief 31.
FAO (2020). World Food Agriculture Statistical Year Book 2020. http://www.fao.org/3/cb1329en/CB1329EN.pdf
FAO (2021). World Food and Agriculture – Statistical Yearbook 2021. FAO. https://doi.org/10.4060/cb4477en
FAOSTAT. (2023). World Food and Agriculture – Statistical Yearbook 2023. In World Food and Agriculture – Statistical Yearbook 2023. FAO. https://doi.org/10.4060/cc8166en
FAOSTAT (2022). World Food and Agriculture – Statistical Yearbook 2022. https://doi.org/10.4060/cc2211en
Gautam, N., and Chaurasia, A. (2020). Study on kinetics and bio-oil production from rice husk, rice straw, bamboo, sugarcane bagasse, and neem bark in a fixed-bed pyrolysis process. Energy, 190. https://doi.org/10.1016/j.energy.2019.116434
Ganesh, I. (2016). Electrochemical conversion of carbon dioxide into renewable fuel chemicals - The role of nanomaterials and the commercialization. Renew. Sustain. Energy Rev., 59: 1269–1297. https://doi.org/10.1016/j.rser.2016.01.026
Gowda, N.N., Taji, F., Subramanya, S., Ranganna, B. (2020). Development a table top centrifugal dehuller for small millets. AMA Agric. Mech. Asia Africa Latin Am, 51, 72-78.
Gowda, N.A., Kaliramesh. S., Vara Prasad, P.V., Bhatt.Y., Netravati, B.P. (2022). Modern Processing of Indian Millets: A Perspective on Changes in Nutritional Properties. Foods, 11: 499. https//doi.org/10.3390/foods11040499
Goudar, G., Manne, M., Sathisha, G. J., Sharma, P., Mokalla, T. R., Kumar, S. B., and Ziouzenkova, O. (2023). Phenolic, nutritional and molecular interaction study among different millet varieties. Food Chem Adv., 2: https://doi.org/10.1016/j.focha.2022.100150
Goutam, P. K., Giri, A., Sharma, M., and Panigrahi, C. K. (2023). Scientific cultivation practices of Kodo millet. Handbook of Millets, 365-284. ISBN - 978-81-967770-4-3
Handayani, S., Hussuil, Y. A., Handayani, A.S., Ismojo., Chalid, M. (2019). Application of waste sorghum stem (sorghum bicolour) as a raw material for microfibre cellulose. IOP Conf. Series: MSEJ, 509012015. Doi:10.1088/1756-899X/509/1/012015
Iyabo, O.O., Ibiyinka, O., Abimbola Deola, O. (2018). Comparative study of nutritional, functional and anti-nutritional properties of white sorghum bicolor (Sorghum) and pennisetum glaucum (Pearl Millet). Int. J. Eng. Technol. Man. Res., 5 (3): 151-158.
Janakiram, C., Thankappan, K.R., Sundaram, K.R. (2011). Sorghum Consumption Modifies the Effect of Fluoride on Dental Fluorosis in India. JECH, 65: A364. Doi: 10.1136/jech.2011.142976m.45
Jindal, P., and Nikhanj, P. (2023). A review on processing technologies for value-added millet products. J. Food Process Eng. Doi:10.1111/jfpe.14419.
Junior, V. N., Carcedo, A. J. P., Min, D., Diatta, A. A., Araya, A., Prasad, P. V. V., Diallo, A., and Ciampitti, I. (2023). Management adaptations for water-limited pearl millet systems in Senegal. Agric. Water Manag., 278: 1–12. https://doi.org/10.1016/j.agwat.2023.108173
Kaur, P., Purewal, S.S., Sandhu, K.S., Kaur, M., Salar, R.K. (2019). Millets: A cereal grain with potent antioxidants and health benefits. J. Food. Meas. Charact, 13: 793-806.
Konapur, A., Gavaravarapur, S.R.M., Gupta, S.,Nair, K.M. (2014). Millets in meeting nutrition security: Issues and way forward for Inda. India J. Nutr. Diet., 51: 306-321.
Kundgol, N.G., Kasturiba, B., Math, K.K., Kamatar, M.Y., Usha, M. (2013). Impact of Decortication on Chemical Composition, Antioxidant Content and Antioxidant Activity of Little Millet Landraces. IJERT, 2(10): 1705-1720.
Krupa, K.N., Dalawai, N., Shashidhar, H.E., Harinikumar, K.M., Manojkumar, H.B., Bharani, S., and Turaidar, V. (2017). Mechanisms of Drought Tolerance in Sorghum: A Review. Int. J. Pure Appl. Biosci., 5(4): 221–237. https://doi.org/10.18782/2320-7051.2845
Kumar, A., Tomer, V., Kaur, A., Kumar, V., and Gupta, K. (2018). Millets: A solution to agrarian and nutritional challenges. Agric Food Secur., 7 (1). BioMed Central Ltd. https://doi.org/10.1186/s40066-018-0183-3
Lenka, B., Kulkarni, G. U., Moharana, A., Singh, A. P., Pradhan, G. S., and Muduli, L. (2020). Millets: Promising Crops for Climate-Smart Agriculture. Int. J. Curr. Microbiol. App Sci., 9(11): 656–668. https://doi.org/10.20546/ijcmas.2020.911.081
Louhar, G., Bana, R. S., Kumar, V., and Kumar, H. (2021). Nutrient management technologies of millets for higher productivity and nutritional security. Indian J. Agric. Sci., 90(12): https://doi.org/10.56093/ijas.v90i12.110267
Maitra, S. (2019). Potential of Intercropping System in Sustaining Crop Productivity. IJAEB, 12(1). https://doi.org/10.30954/0974-1712.03.2019.7
Meng, R., Li, Z.-P., Kang, X.-T., Zhang, Y.-J., Wang, Y.-R., Ma, Y.-C., Wu, Y.-F., Dong, S.-Q., Li, X.-R., Gao, L., Chu, X.-Q., Yang, G.-H., and Yuan, X.-Y. (2024). Overexpression of foxtail millet (Setaria italica) amino acid permease 9 ( SiAAP9 ) inhibits the growth in transgenic Arabidopsis. J. Res. Sq, 1–28. https://doi.org/10.21203/rs.3.rs-3907371/v1
Meena, R. P., Joshi, D., Bisht, J. K., and Kant, L. (2021). Global Scenario of Millets Cultivation. In Millets and Millet Technology, 33–50. https://doi.org/10.1007/978-981-16-0676-2_2
McMaster, G. S., and Wilhelm, W. W. (1997). Growing degree-days: one equation, two interpretations. Agric. For. Meteorol., 87(4): 291-300. https://doi.org/10.1016/S0168-1923(97)00027-0
Mishra, R. K., and Mohanty, K. (2018). Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour. Technol., 251: 63–74. https://doi.org/10.1016/j.biortech.2017.12.029
Mohite, A.S., Jagtap, A.R., Avhad, M.S., and More, A.P. (2022). Recycling of major agriculture crop residues and its application in polymer industry: Energy nexus, 7: https://doi.org/10.1016/j.nexus.2022.100134
Nadeem, F., Ahmad, Z., Ul Hassan, M., Wang, R., Diao, X., and Li, X. (2020). Adaptation of Foxtail Millet (Setaria italica L.) to Abiotic Stresses: A Special Perspective of Responses to Nitrogen and Phosphate Limitations. Front Plant Sci., 11. Frontiers Media S.A. https://doi.org/10.3389/fpls.2020.00187
Nazni, S.,and Devi, S. (2016). Effect of processing on the characteristics changes in barnyard and foxtail millet. J. Food Process. Technol., 7(3): 1-8. http://dx.doi.org/10.4172/2157-7110.1000566
Obadina, A., Ishola, I., Adekoya, O., Soares, A., de Carvalho, C.W., Barboza, H. (2016). Nutritional and physico-chemical properties of flour from native and raosted whole grain pearl millet (Pennisetum [L.] R.Br.). J. Cereal Sci., 70: 247-252. http://dx.doi.org/10.1016/j.jcs.2016.06.005
Oghbaei, M.,and Prakash, J. (2016). Effect of primary processing of cereals and legumes on its nutritional quality: A Comprhensive Review. Cogent Food. Agric., 2: http://dx.doi.org/10.1080/23311932.2015.1136015
Paschapur, A. U., Joshi, D., Mishra, K. K., Kant, L., Kumar, V., and Kumar, A. (2021). Millets for Life: A Brief Introduction. In Millets and Millet Technology, 1–32. https://doi.org/10.1007/978-981-16-0676-2_1
Pradeep, P.M.,and Sreeram, Y.N. (2015). Impact of processing on the phenolic profiles of small millets: Evaluation of their antioxidant and enzyme inhibitory properties associated with hyperglycemia. Food Chem., 169: 455-463. http://dx.doi.org/10.1016/j.foodchem.2014.08.010
Pradhan, A., Nag, S. K., and Mukherjee, S. C. (2018). Thermal requirement of small millets in Chhattisgarh plateau under rainfed. J. Agrometeorol., 20(3): 244–245. https://doi.org/10.54386/jam.v20i3.554
Prajapati, S. K., Kumar, B., Chandra, P., Azad, S., Kumar, D., and Chandra, R. (2023). Small Millets: A Nutritional Powerhouse for Food Security and Health. http://www.rdagriculture.in
Pushparaj, FS. and Urooj, A. (2017). Impact of household processing methods on the nutritional characteristics of pearl millet (Pennisetum typhoideum): A Review. Moj Food Process. Technol, 4(1): 28-32. 00082.
Ranjan, R., Singh, S., Dhua, S., Mishra, P., Chauhan, A. K., and Gupta, A. K. (2023). Kodo Millet (Paspalum scrobiculatum): Bioactive Profile, Health Benefits and Techno- Functionality. In Nutri-Cereals: Nutraceutical and Techno-Functional Potential, 193–211). CRC Press. https://doi.org/10.1201/9781003251279-8
Rathore, T., Singh, R.,Kambel, D.B., Upadhyay, A., Thangalakshmi, S. (2019). Review on finger millet: Processing and value addition. Pharma Innov. J., 8(4): 283-291.
Renganathan, V. G., Vanniarajan, C., Karthikeyan, A., and Ramalingam, J. (2020). Barnyard Millet for Food and Nutritional Security: Current Status and Future Research Direction. In Frontiers in Genetics, 11. Frontiers Media S.A. https://doi.org/10.3389/fgene.2020.00500
Rani, S., Singh, R., Sehrawat, R., Kaur, B.P., Upadhyay, A. (2018). Pearl millet processing: A Review. Nutr. Food. Sci., 48 (1): 30-44. https://doi.org/10.1108/NFS-04-2017-007
Sabu, K. M., and Kumar, T. K. M. (2020). Predictive analytics in Agriculture: Forecasting prices of Arecanuts in Kerala. Procedia Comput. Sci., 171: 699–708. https://doi.org/10.1016/j.procs.2020.04.076
Sahoo, K., Kumar, A., and Chakraborty, J. P. (2021). A comparative study on valuable products: bio-oil, biochar, and non-condensable gases from pyrolysis of agricultural residues. JMCWM, 23(1): 186–204. https://doi.org/10.1007/s10163-020-01114-2
Saleh, A. S. M., Zhang, Q., Chen, J., Shen, Q. (2013). Millet Grains: Nutritional quality, processing and potential health benefits. Compr. Rev. Food Sci. Foods Saf, 12: 281-295. https://doi.org/10.1111/1541-4337.12012
Ren, X., Chen, J., Molla, M. M., Wang, C., Diao, X., and Shen, Q. (2016). In vitro starch digestibility and in vivo glycemic response of foxtail millet and its products. Food Funct., 7(1): 372–379. https://doi.org/10.1039/c5fo01074h
Ringsmuth, A. K., Landsberg, M. J., and Hankamer, B. (2016). Can photosynthesis enable a global transition from fossil fuels to solar fuels, to mitigate climate change and fuel-supply limitations? Renew. Sustain. Energy Rev., 62: 134–163). Elsevier Ltd. https://doi.org/10.1016/j.rser.2016.04.016
Sathiya, V., and Chithra, R. (2019). Nutritive Value, Glycemic Index and Glycemic Load of Selected Dosa Varieties. I.JHSR, 9(3): 215–219. ISSN: 2249-9571
Serba, D. D., Yadav, R. S., Varshney, R. K., Gupta, S. K., Mahalingam, G., Srivastava, R. K., Gupta, R., Perumal, R., and Tesso, T. T. (2020). Genomic designing of pearl millet: A resilient crop for arid and semi-arid environments. In Genomic Designing of Climate-Smart Cereal Crops, 221–286. Springer International Publishing. https://doi.org/10.1007/978-3-319-93381-8_6
Sharma, N., Goyal, S.K., Alam, T., Fatma, S., Chaorungrit, A.,Niranjan, K.(2018). Effect of high pressure soaking on water absorption, gelatinization, and biochemical properties of germinated and non-germinated foxtail millet grains. J. Cereal Sci., 83: 162-170. https://doi.org/10.1016/j.jcs.2018.08.013
Sharma, N., Sahu, J. K., Bansal, V., Esua, O. J., Rana, S., Bhardwaj, A., Punia Bangar, S., and Adedeji, A. A. (2023). Trends in millet and pseudomillet proteins - Characterization, processing, and food applications. In Food Res Int, 164: Elsevier Ltd. https://doi.org/10.1016/j.foodres.2022.112310
Sharma, S., Saxena, D.C., Riar, C.S. (2017). Using combined optimization, GC-MS and analytical technique to analyze the germination effect on phenolics, dietary fibers, minerals and gaba contents of kodo millet (Paspalum scrobiculatum). Food Chem, 233, 20-28. https://doi.org/10.1016/j.foodchem.2017.04.099
Sharma, S., Saxena, D.C., Riar, C.S. (2015). Antioxidant activity, total phenolics, flavonoids, and antinutritional characteristics of germinated foxtail millet (Setaria italica). Cogent Food Agric.,1. http://dx.doI.org/10.1080/23311932.2015.1081728
Sharmili, K., Yasodha, M., Rajesh, P., Rajendran, K., Thankappan, S., and Minithra, R. (2021). Millet and pulse-based intercropping system for agricultural sustainability - A review. Crop Res., 56(6): 369–378. https://doi.org/10.31830/2454-1761.2021.059
Shah, P., Mehta, N., and Shah, S. (2024). Exploring the factors that drive millet consumption: Insights from regular and occasional consumers. J. Retail. Consum. Serv., 76. https://doi.org/10.1016/j.jretconser.2023.103598
Singh, A. D., Gajera, B., and Sarma, A. K. (2022). Appraising the availability of biomass residues in India and their bioenergy potential. J. Waste Manag, 152: 38–47. https://doi.org/10.1016/j.wasman.08.001
Singh, A., Kumar, M., and Shamim, Md. (2020). Importance of minor millets (Nutri Cereals) for nutrition purposes in the present scenario. Int. J. Chem. Stud., 8(1): 3109–3113. https://doi.org/10.22271/chemi.2020.v8.i1au.9226
Singh, E., and Sarita. (2016). Potential functional implications of finger millet (Eleusine coracana) in nutritional benefits, processing, health and diseases: A review. Int. J. Home Sci, 2(1): 151–155. www.homesciencejournal.com
Sood, S., Joshi, D. C., and Pattanayak, A. (2020). Breeding Advancements in Barnyard Millet. In Accelerated Plant Breeding: Cereal Crops, 1: 391–409. https://doi.org/10.1007/978-3-030-41866-3_15
Sood, S., Khulbe, R. K., Gupta, A. K., Agrawal, P. K., Upadhyaya, H. D., and Bhatt, J. C. (2015). Barnyard millet - A potential food and feed crop of future. Plant Breed., 134 (2): 135–147. https://doi.org/10.1111/pbr.12243
Sun, S.L., Wen, J.L., Ma, M.G., and Sun, R.C. (2013). Successive alkali extraction and structural characterization of hemicelluloses from sweet sorghum stem. Carbohydr. Polym, 92: 2224-2231. http://dx.doi.org/10,1016/j.carbpol,2012,11.098
Sushmita, V. P., Lakshmi, J., and Lakshmi APGC, K. (2020). Nutrient Composition of Little Millet Varieties. The Andhra Agric. J., 67 (1). https://aaj.net.in/wp-content/uploads/2023/08/67-1-014.pdf
Swain, P. S., Mohanty, B. B., and Pradhan, A. K. (2023). Untangling the factors influencing finger millet production: Evidence from the Indian states. Int. J. Soil Sci, 73(248): 359–372. https://doi.org/10.1111/issj.12423
Tadele, Z. (2016). Drought Adaptation in Millets. In Abiotic and Biotic Stress in Plants - Recent Advances and Future Perspectives, Tech: 640–662. https://doi.org/10.5772/61929
Tagade, A., Kirti, N., and Sawarkar, A. N. (2021). Pyrolysis of agricultural crop residues: An overview of researches by Indian scientific community. Bioresour. Technol. Rep, 15. https://doi.org/10.1016/j.biteb.2021.100761
Tagade, A., and Sawarkar, A. N. (2023). Valorization of millet agro-residues for bioenergy production through pyrolysis: Recent inroads, technological bottlenecks, possible remedies, and future directions. In Bioresour. Technol, 384. Elsevier Ltd. https://doi.org/10.1016/j.biortech.2023.129335
Tripathi, G., Jitendrakumar, P. H., Borah, A., Nath, D., Das, H., Bansal, S., Singh, N., and Singh, B. V. (2023). A Review on Nutritional and Health Benefits of Millets. Int. J. Plant & Soil Sci, 35(19), 1736–1743. https://doi.org/10.9734/ijpss/2023/v35i193722
Ullah, A., Ahmad, A., Khaliq, T., and Akhtar, J. (2017). Recognizing production options for pearl millet in Pakistan under changing climate scenarios. In Journal of Integr. Agric, 16 (4), 762–773. https://doi.org/10.1016/S2095-3119(16)61450-8
USDA (2023). Report of Top-Producing Millets by the Countries, .https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=0459100
Van de Velden, M., Baeyens, J., Brems, A., Janssens, B., and Dewil, R. (2010). Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. J. Renew. Energy, 35(1), 232–242. https://doi.org/10.1016/j.renene.2009.04.019
Venkateswarlu, R., M, M. V, Jacob, J., V, R. C., and Kumar, M. (2023). Health benefits of millets. Indian Farming, 73(01), 91–93.
Venkatramanan, V., Shah, S., Prasad, S., Singh, A., and Prasad, R. (2021). Assessment of Bioenergy Generation Potential of Agricultural Crop Residues in India. CE & S, 1(4), 1335–1348. https://doi.org/10.1007/s43615-021-00072-7
Viguiliouk, E., Nishi, S. K., Wolever, T. M. S., and Sievenpiper, J. L. (2018). Point: Glycemic index’an important but oft-misunderstood marker of carbohydrate quality. CFW, 63(4), 158–164. https://doi.org/10.1094/CFW-63-4-0158
Vikraman, V.K., Kumar, D. P., Boopathi, G., Subramanian, P. (2021). Kenetic and thermodynamic study of finger millet straw pyrolysis through thermogravimetric analysis. Bioresour.Technol, 342, 2-11. https://doi.org/10.1016/j.biortech.2021.125992
Wang, J., and Yang, Y. (2016). Energy, exergy, and environmental analysis of a hybrid combined cooling heating and power system utilizing biomass and solar energy. Energy Convers,Manag. 124, 566–577. https://doi.org/10.1016/j.enconman.2016.07.059
WHO. (2018). A healthy diet is sustainably produced. WHO/NMH/NHD/18.12 https://iris.who.int/bitstream/handle/10665/278948/WHO-NMH-NHD-18.12-eng.pdf?sequence=1
Wimalasiri, E. M., Ashfold, M. J., Jahanshiri, E., Walker, S., Azam-Ali, S. N., and Karunaratne, A. S. (2023). Agro-climatic sensitivity analysis for sustainable crop diversification; the case of Proso millet (Panicum miliaceum L.). PLoS ONE, 18(3). https://doi.org/10.1371/journal.pone.0283298
Wilson, M. L., and VanBuren, R. (2022). Leveraging millets for developing climate resilient agriculture. In Curr.Opin. Biotechnol, 75. Elsevier Ltd. https://doi.org/10.1016/j.copbio.2022.102683
Yadav, A., Niresh, A., Kumar, S., Chaitali, S., and Satvika, C. (2023). The Pharma Innovation Journal 2023; 12(3): 3026-3035 Studies on development of technology for preparation of millet based extruded snack. The Pharm. Innov. J,12(3), 3026–3035. www.thepharmajournal.com
Yousaf, L., Hou, D., Liaqat, H., Shen, Q., Millet. (2021). A review of its nutritional and functional changes during processing. Food Res. Int, 142, 1-13. https://doi.org/10.1016/j.foodres.2021.110197
Zhang, D., Ali, L., Shu, K.L., Ping, L., Zong, Y., Zhiqian, G., and Hao, X. (2021). Increased carbon uptake under elevated CO2 concentration enhances water-use efficiency of C4 broomcorn millet under drought. Agric.Water Manag, 245, 1-10. https://doi.org/10.1016/j.agwat.2020.106631
Zhang, G., Wang, J., Zhang, G., Liu, X., Quan, Z., Cheng, S. (2012). Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat. Biotechnol, 30(6), 549–554. https://doi.org/10.1038/nbt.2195
Zhai, Y., Zhu, Y., Cui, S., Tao, Y., Kai, X., and Yang, T. (2022). Study on the co-pyrolysis of oil shale and corn stalk: Pyrolysis characteristics, kinetic and gaseous product analysis. J.Anal. Appl. Pyrolysis, 163. https://doi.org/10.1016/j.jaap.2022.105456
Downloads
Published
How to Cite
License
Copyright (c) 2025 DEMISIE EJIGU, RAJI PUSHPALATHA, SRUTHY S., VINOD PADIL, BYJU GANGADHARAN, ROSHNI THENDIYATH, SAJITHKUMAR KJ, GHANSHYAM UPADHYAY, SURYA HARILAL

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This is a human-readable summary of (and not a substitute for) the license. Disclaimer.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.