Spatio-temporal variations in air pollutants and their impact on wheat crop production in eastern Uttar Pradesh
DOI:
https://doi.org/10.54386/jam.v27i2.2862Keywords:
AOD, Black carbon, Wheat yield, HYSPLIT model., Trends and vaiability, , Backward trajectory analysisAbstract
Recently, air pollutants have posed significant hazards to agricultural production, emerging as a critical risk to global food security. To address this issue, the study examines the spatio-temporal variability of air pollutants, specifically aerosol optical depth (AOD) and black carbon (BC). It investigates the impact of these pollutants on wheat production in eastern Uttar Pradesh, India. The study uses MODIS satellite observations and MERRA-2 reanalysis data, the study analyzes monthly and seasonal variations in AOD and BC from 2001 to 2023. The findings highlight a noticeable rise in AOD and BC due to biomass/residue burning, fossil fuel emissions and transported dust. Backward trajectory analysis, conducted using HYSPLIT modeling, traces pollutant origins and transport pathways from regions like the Thar Desert and the Arabian Sea. Wheat yield assessments in districts such as Varanasi, Gorakhpur, and Sonbhadra reveal spatially variable impacts of aerosols on crop productivity. Elevated AOD levels are linked to reduced wheat yields in some districts, while BC exhibits minimal influence. This study underscores the critical need for targeted regional policies to mitigate air pollution and minimize its adverse effects on agriculture in this high-yielding wheat-growing region.
References
Alados‐Arboledas, L., Müller, D., Guerrero‐Rascado, J. L., Navas‐Guzmán, F., Pérez‐Ramírez, D., and Olmo, F. J. (2011). Optical and microphysical properties of fresh biomass burning aerosol retrieved by Raman lidar, and star‐and sun‐photometry. Geophys. Res. Lett., 38(1). https://doi.org/10.1029/2010GL045999
Ali, H. H., Wahab, B. I., and Al-Hmeed, H. M. A. (2024). Comprehensive air quality analysis in Karbala: Investigating the relationships between meteorological factors and pollutants across different landscapes. J. Agrometeorol., 26(4): 401-410. https://doi.org/10.54386/jam.v26i4. 2665
Awasthi, N., Tripathi, J. N., Dakhore, K., Gupta, D. K., & Kadam, Y. E. (2023). Assessment of climatic impact on growth and production of rice (Kharif) and wheat (Rabi) using geospatial technology over Haryana. Mausam, 74(4): 911–920. https://doi.org/10.54302/mausam.v74i4.6194
Bhatla R., Dani Babita, and Tripathi A. (2018). Impact of climate on sugarcane yield over Gorakhpur District, UP using statistical model, Vayu Mandal, 44 (1): 11-22
Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H., and Klimont, Z. (2004). A technology‐based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res.: Atmos., 109(D14). https://doi.org/10.1029/2003JD003697
Burney, J., and Ramanathan, V. (2014). Recent climate and air pollution impacts on Indian agriculture. PNAS, 111(46), 16319-16324. https://doi.org/10.1073/pnas.1317275111
Diksha, Kumari, M., Mishra, V. N., Kumar, D., Kumar, P., and Abdo, H. G. (2024). Unveiling pollutants in Sonipat district, Haryana: Exploring seasonal, spatial and meteorological patterns. Phys. Chem. Earth, Parts A/B/C, 135:103678. https://doi.org/10.1016/ j.pce.2024.103678
Fleming, Z. L., Monks, P. S., and Manning, A. J. (2012). Untangling the influence of air-mass history in interpreting observed atmospheric composition. Atmos. Res., 104-105, 1-39. https://doi.org/10.1016/j.atmosres.2011.09.009
Gupta, D. K., Pramanick, S., and Singh, A. K. (2022, December). Atmospheric Aerosol and weather vulnerability on Maize production in India. In 2022 URSI Regional Conference on Radio Science (USRI-RCRS) (pp. 1-4). IEEE. 10.23919/URSI-RCRS56822.2022.10118482
Guttikunda, S. K., Goel, R., and Pant, P. (2014). Nature of air pollution, emission sources, and management in the Indian cities. Atmos. Environ., 95: 501–510. https://doi.org/10.1016/j.atmosenv.2014.07.006
Jacobson, M. Z. (2000). A physically‐based treatment of elemental carbon optics: Implications for global direct forcing of aerosols. Geophys. Res. Lett., 27(2), 217-220. DOI: 10.1029/1999GL010968
Jacobson, M. Z. (2001). Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409(6821), 695-697. DOI: 10.1038/35055518
Krishna Moorthy, K., Suresh Babu, S., Manoj, M. R., and Satheesh, S. K. (2013). Buildup of aerosols over the Indian Region. Geophys. Res. Lett., 40(5): 1011-1014. https://doi.org/10.1002/grl.50165
Kumar, P., Choudhary, A., Joshi, P. K., Prasad, R., and Singh, S. K. (2022a). Multiple crop yield estimation and forecasting using MERRA-2 model, satellite-gauge and MODIS satellite data by time series and regression modelling approach. Geocarto Intern., 37(27): 16590-16619. https://doi.org/10.1080/10106049.2022.2112301
Kumar, P., Kapur, S., Choudhary, A., and Singh, A. K. (2022b). Spatiotemporal variability of optical properties of aerosols over the Indo-Gangetic Plain during 2011–2015. Ind. J. Phys., 1-13. https://doi.org/10.1007/s12648-020-01987-x
Kumar, P., Pratap, V., Kumar, A., Choudhary, A., Prasad, R., Shukla, A., ... and Singh, A. K. (2020). Assessment of atmospheric aerosols over Varanasi: Physical, optical and chemical properties and meteorological implications. J. Atmos. Solar-Terrest. Phy., 209: 105424. https://doi.org/10.1016/j.jastp.2020.105424
Kumar, R. P., Singh, R., Kumar, P., Kumar, R., Nahid, S., Singh, S. K., and Nijjar, C. S. (2024). Aerosol-PM2. 5 Dynamics: In-situ and satellite observations under the influence of regional crop residue burning in post-monsoon over Delhi-NCR, India. Environ. Res., 255: 119141. https://doi.org/10.1016/j.envres.2024.119141
Lorente, J., Redan, A., & De Cabo, X. (1994). Influence of urban aerosol on spectral solar irradiance. J. Appl. Meteorol. Climatol., 33(3): 406-415. https://doi.org/10.1175/1520-0450(1994)033<0406:IOUAOS>2.0.CO;2
Mehrotra, B. J., Srivastava, A. K., Singh, A., Parashar, D., Majumder, N., Singh, R. S., et al. (2024). Long‐term trend in Black Carbon mass concentration over Central Indo‐Gangetic Plain location: Understanding the implied change in radiative forcing. J. Geophys. Res.: Atmos., 129. https://doi.org/10.1029/2024JD040754
Nasser, M. S., Al-Hassany, J. S., and Al-Jiboori, M. H. (2024). Assessment of air pollution dispersion during wet season: A case study of Rumaila Combined Cycle Power Plant, Basrah, Iraq. J. Agrometeorol., 26(4): 411-418. https://doi.org/10.54386/jam.v26i4.2756
Payra, S., Gupta, P., Bhatla, R. Amraoui, L., and Verma, S. (2021). Temporal and spatial variability in aerosol optical depth (550 nm) over four major cities of India using data from MODIS onboard the Terra and Aqua satellites. Arab. J. Geosci., 14: 1256. https://doi.org/10.1007/s12517-021-07455-y
Patel, N. R., Pokhariyal, S., and Singh, R. P. (2023). Advancements in remote sensing based crop yield modelling in India. J. Agrometeorol., 25(3): 343-351. https://doi.org/10.54386/jam.v25i3.2316
Pratap, V., Kumar, A., Tiwari, S., Kumar, P., Tripathi, A. K., and Singh, A. K. (2020). Chemical characteristics of particulate matters and their emission sources over Varanasi during winter season. J. Atmos. Chem., 77: 83-99. https://doi.org/10.1007/s10874-020-09405-6
Bhattacharya, P., Bandyopadhyay, K. K., Krishnan, P., Maity, P. P., Purakayastha, T. J., Bhatia, A., ... & Tomer, R. (2023). Impact of tillage and residue management on greenhouse gases emissions and global warming potential of winter wheat in a semi-arid climate. J. Agrometeorol., 25(4): 503-509. https://doi.org/10.54386/jam.v25i4.2337
Ramanathan, V., and Carmichael, G. (2008). Global and regional climate changes due to black carbon. Nat. Geosci., 1(4): 221-227. https://doi.org/10.1038/ngeo156
Sanyal, S., Chakrabarti, B., Bhatia, A., Kumar, S. N., Purakayastha, T. J., Kumar, D., ... and Kumar, V. (2023). Response of aestivum and durum wheat varieties to elevated CO2 and temperature under OTC condition. J. Agrometeorol., 25(4): 498-502. https://doi.org/10.54386/jam.v25i4.2366
Soni, V. K., Bist, S., Bhatla, R., Bhan, S. C., Kumar, G., Sateesh, M., ... & Pattanaik, D. R. (2018). Effect of unusual dust event on meteorological parameters & aerosol optical and radiative properties. Mausam, 69(2): 227-242. https://doi.org/10.54302/ mausam. v69i2.290
Sharma, V., Ghosh, S., Mishra, V. N., and Kumar, P. (2025). Spatio-temporal Variations and Forecast of PM2.5 concentration around selected Satellite Cities of Delhi, India using ARIMA model. Phys. Chem. Earth, Parts A/B/C, Parts A/B/C, 138: 103849. https://doi.org/10.1016/j.pce.2024.103849
Stein, A. F., Ngan, F., Draxler, R. R., and Chai, T. (2015). Potential use of transport and dispersion model ensembles for forecasting applications. WeatherForecast., 30(3): 639-655. https://doi.org/10.1175/WAF-D-14-00153.1
Stunder, B. J., Heffter, J. L., and Draxler, R. R. (2007). Airborne volcanic ash forecast area reliability. WeatherForecast, 22(5):1132-1139. DOI: 10.1175/WAF1042.1
Tripathi, A., Singh, R. S., Bhatla, R., and Kumar, A. (2016). Maize yield estimation using agro-meteorological variables in Jaunpur district of Eastern Uttar Pradesh. J. Agrometeorol., 18(1): 153-154. https://doi.org/10.54386/jam.v18i1.923
Wolf, M. E., and Hidy, G. M. (1997). Aerosols and climate: Anthropogenic emissions and trends for 50 years. J. Geophys. Res.: Atmos., 102(D10): 11113-11121. https://doi.org/ 10.1029/97JD00199
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 R. BHATLA, PRIYA RAJ, PRADEEP KUMAR, AKASH VISHWAKARMA, BABITA DANI

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This is a human-readable summary of (and not a substitute for) the license. Disclaimer.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.