Evaluation of NOAH-LSM model over Pune and Ranchi in different seasons
DOI:
https://doi.org/10.54386/jam.v27i1.2846Keywords:
Land surface model, Radiation, Sensible heat, Latent heat, Soil heat, Bowen ratioAbstract
Soil moisture (SM) and atmospheric parameters determine the surface energy partition, which impacts near-surface air temperature and moisture. Two locations, Pune and Ranchi, with different soil moisture (SM at Pune with clay soil is higher than that at Ranchi with loam soil), are chosen to evaluate the NOAH land surface model (NCEP, OSU-version 2.7.1) for winter, pre-monsoon and post-monsoon seasons. We have used the estimated surface fluxes by eddy covariance technique for the model validation. Agreement is better between the model and observations of net shortwave radiation for dry soil than that for wet soil, such a feature caused by surface albedo mismatch. Model validation of sensible (H) and latent (LE) heat fluxes at Pune indicate better agreement overall for winter (Jan; R2 and RMSE for H, 0.72, 34) and post-monsoon (Nov; 0.67, 56) compared to summer, (May; 0.55, 70). Similar is the case at Ranchi, with R2 and RMSE for winter and post-monsoon (January: 0.8, 24 & November: 0.9, 14) better and lower for summer (May: 0.7, 65). Bowen ratio (Model) for wet soil (0.45) is lower than that for dry soil (0.6). The model underestimates ground heat flux for wet soil and overestimates for dry soil due to soil thermal and hydraulic conductivity uncertainty. Further improvement of parameterization schemes in the land surface models would help better understand soil hydrology and boundary layer development.
References
Bowling, L. C., Lettenmaier, D. P., Nijssen, B., Polcher, J., Koster, R. D., and Lohmann, D. (2003). Simulation of high-latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2 (e): 3: Equivalent model representation and sensitivity experiments. Global Planet. Change, 38(1-2): 55-71. https://doi.org/10.1016/S0921-8181(03)00005-5
Chang, H. I., Kumar, A., Niyogi, D., Mohanty, U. C., Chen, F., & Dudhia, J. (2009). The role of land surface processes on the mesoscale simulation of the July 26, 2005 heavy rain event over Mumbai, India. Global Planet. Change, 67(1-2): 87-103. https://doi.org/10.1016/j.gloplacha.2008.12.005
Chang, S., Hahn, D., Yang, C. H., Norquist, D., and Ek, M. (1999). Validation study of the CAPS model land surface scheme using the 1987 Cabauw/PILPS dataset. J. Appl. Meteorol., 38(4): 405-422. https://doi.org/10.1175/1520-0450(1999)038<0405:VSOTCM>2.0.CO;2
Chen, X., Pan, Z., Huang, B., Liang, J., Wang, J., Zhang, Z., ... and Huang, Z. (2024). Influence paradigms of soil moisture on land surface energy partitioning under different climatic conditions. Sci. Total Environ., 916: 170098. https://doi.org/10.1016/j.scitotenv.2024.170098
Clapp, R. B., and Hornberger, G. M. (1978). Empirical equations for some soil hydraulic properties. Water Resour. Res., 14(4): 601-604. https://doi.org/10.1029/WR014i004p00601
Danodia, A., Patel, N., Sehgal, V., and Singh, R. (2024a). Surface energy fluxes and energy balance closure using large aperture scintillometer-based ET station on heterogeneous agricultural landscape in north India. J. Agrometeorol., 26(1): 18–24. https://doi.org/10.54386/jam.v26i1.2447
Danodia, A., Patel, N., Suresh Kumar, Singh, R., Satpathi, A., Chauhan, P., and A. S. Nain. (2024b). Quantifying energy fluxes in Tarai region of India during post-monsoon season: Insights from METRIC model, ET station and remote sensing. J. Agrometeorol., 26(3): 271–278. https://doi.org/10.54386/jam.v26i3.2618
Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., ... & Tarpley, J. D. (2003). Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophy. Res.: Atmos., 108(D22). https://doi.org/10.1029/2002JD003296
Rajagopal, E. N. (2001). Validation of land surface parameters in NCMRWF model with LASPEX Data set. J. Agrometeorol., 3(1-2), 217–226. https://doi.org/10.54386/jam.v3i1-2.408
Fisher, R. A., and Koven, C. D. (2020). Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. J. Advan. Model. Earth Syst., 12(4): e2018MS001453. https://doi.org/10.1029/2018MS001453
Ghosh, T., Chakraborty, D., Das, B., Sehgal, V. K., Roy, D., Dhakar, R., and Bag, K. (2023). Estimation of actual evapotranspiration using the simplified-surface energy balance index model on an irrigated agricultural farm. J. Agrometeorol., 25(3): 365-374. https://doi.org/10.54386/jam.v25i3.2254
Haghighi, E., Short Gianotti, D. J., Akbar, R., Salvucci, G. D., and Entekhabi, D. (2018). Soil and atmospheric controls on the land surface energy balance: A generalized framework for distinguishing moisture‐limited and energy‐limited evaporation regimes. Water Resour. Res., 54(3): 1831-1851. https://doi.org/10.1002/2017WR021729.
Han, Z., Ueda, H., and An, J. (2008). Evaluation and intercomparison of meteorological predictions by five MM5-PBL parameterizations in combination with three land-surface models. Atmos. Environ., 42(2): 233-249. https://doi.org/10.1175/2010JAMC2432.1
Holtslag, A. A. M., and Ek, M. (1996). Simulation of surface fluxes and boundary layer development over the pine forest in HAPEX-MOBILHY. J. Appl. Meteorol. Climatol., 35(2): 202-213. https://doi.org/10.1175/1520-0450(1996)035<0202:SOSFAB>2.0.CO;2
Holtslag, A. A. M., and Ek, M. B. (2005). Atmospheric Boundary Layer Climates and Interactions with the Land Surface. In M. G. Anderson, & J. J. McDonnell (Eds.), Encycl. Hydrol. Sci., 3: 443-454. https://doi.org/10.1007/s10546-007-9214-5
Jiang, K., Pan, Z., Pan, F., Teuling, A. J., Han, G., An, P., ... and Dong, Z. (2023). Combined influence of soil moisture and atmospheric humidity on land surface temperature under different climatic background. Isci., 26(6): https://doi.org/10.1016/j.isci.2023.106837
Kumar, M., Vyas Pandey and Shekh, A. M. (2007). Surface layer simulation of semi-arid region of India using LASPEX-97 data. J. Agrometeorol., 9(1):115-117. https://doi.org/10.54386/jam.v9i1.1110
Liang, X., and Guo, J. (2003). Intercomparison of land-surface parameterization schemes: sensitivity of surface energy and water fluxes to model parameters. J. Hydrol., 279(1-4), 182-209. https://doi.org/10.1016/S0022-1694(03)00168-9
Maity, S., Satyanarayana, A. N. V., Mandal, M., and Nayak, S. (2017). Performance evaluation of land surface models and cumulus convection schemes in the simulation of Indian summer monsoon using a regional climate model. Atmos. Res., 197: 21-41. https://doi.org/10.1016/j.atmosres.2017.06.023
Marshall, C. H., Crawford, K. C., Mitchell, K. E., and Stensrud, D. J. (2003). The impact of the land surface physics in the operational NCEP Eta model on simulating the diurnal cycle: Evaluation and testing using Oklahoma Mesonet data. Weather. Forecast., 18(5):748-768. https://doi.org/10.1175/1520-0434(2003)018<0748:TIOTLS>2.0.CO;2
Murthy B.S., Dharmaraj T. and Pillai J.S. (2001). Variation of surface energy budget at Anand during different seasons of LASPEX-97. J. Agrometeorol, 3: 67-77. https://doi.org/10.54386/jam.v3i1-2.391
Murthy, B. S., Parasnis, S. S., and Ek, M. (2004). Interactions of the land-surface with the atmospheric boundary layer: case studies from LASPEX. Curr. Sci., 1128-1134. http://www.jstor.org/stable/24109322
Nair, A. S., and Indu, J. (2016). Enhancing Noah land surface model prediction skill over Indian subcontinent by assimilating SMOPS blended soil moisture. Remote Sens., 8(12): 976. https://doi.org/10.3390/rs8120976
Pan, H. L., and Mahrt, L. (1987). Interaction between soil hydrology and boundary-layer development. Boundary-Layer Meteorol., 38: 185-202. https://doi.org/10.1007/BF00121563
Panda, J., and Sharan, M. (2012). Influence of land-surface and turbulent parameterization schemes on regional-scale boundary layer characteristics over northern India. Atmos. Res., 112: 89-111. https://doi.org/10.1016/j.atmosres.2012.04.001
Parasnis, S. S., Kulkarni, M. K., and Pillai, J. S. (2001). Simulation of boundary layer parameters using one dimensional atmospheric boundary layer model. J. Agrometeorol., 3(1-2), 261–266. https://doi.org/10.54386/jam.v3i1-2.411
Patil M.N., Murthy B.S., and Parasnis S.S. (2001). Characteristics of momentum and sensible heat flux during the monsoon conditions over LASPEX region. J. Agrometeorol, 3 (1-2): 107-117. https://doi.org/10.54386/jam.v3i1-2.395
Peters‐Lidard, C. D., Zion, M. S., and Wood, E. F. (1997). A soil‐vegetation‐atmosphere transfer scheme for modeling spatially variable water and energy balance processes. J. Geoph. Res.: Atmos., 102(D4): 4303-4324. https://doi.org/10.1029/96JD02948
Rosero, E., Yang, Z. L., Wagener, T., Gulden, L. E., Yatheendradas, S., and Niu, G. Y. (2010). Quantifying parameter sensitivity, interaction, and transferability in hydrologically enhanced versions of the Noah land surface model over transition zones during the warm season. J. Geoph. Res.: Atmos., 115(D3): https://doi.org/10.1029/2009JD012035
Singh, R. P., Oza, S. R., Chaudhari, K. N., and Dadhwal, V. K. (2005). Spatial and temporal patterns of surface soil moisture over India estimated using surface wetness index from SSM/I microwave radiometer. Intern. J. Remote Sens., 26(6): 1269-1276. https://doi.org/10.1080/01431160412331330284
Wang, L., Gao, Z., and Horton, R. (2010). Comparison of six algorithms to determine the soil apparent thermal diffusivity at a site in the Loess Plateau of China. Soil Sci., 175(2): 51-60. https://doi.org/10.5194/hessd-6-2247-2009
Zhao, Y., Si, B., Zhang, Z., Li, M., He, H., and Hill, R. L. (2019). A new thermal conductivity model for sandy and peat soils. Agric. Forest Meteorol., 274: 95-105. https://doi.org/10.1016/j.agrformet.2019.04.004
Zhu, C., and Lettenmaier, D. P. (2007). Long-term climate and derived surface hydrology and energy flux data for Mexico: 1925–2004. J. Clim., 20(9): 1936-1946. https://doi.org/10.1175/JCLI4086.1
Downloads
Published
How to Cite
License
Copyright (c) 2025 JOSNA MURMU, LATHA RADHADEVI, MANOJ KUMAR, MURTHY S. BANDARU

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This is a human-readable summary of (and not a substitute for) the license. Disclaimer.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.