Meteorological and satellite-based data for drought prediction using data-driven model

Authors

DOI:

https://doi.org/10.54386/jam.v26i4.2734

Keywords:

Drought Deciles index, Meteorological Drought, Multilayer Perceptron, Hydrology

Abstract

This work presents a data-driven model, the Artificial Neural Network-Multilayer Perceptron Neural Network (ANN-MLP), for use in meteorological drought deciles index (DDI) predictions over various climatic sub-zone. Two types of rainfall data from meteorological weather stations (WSs) and satellite-based estimates of PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network) were adopted. This work considered the calculated DDI (DDI original) from WSs to train and develop the proposed algorithm at three sub-zones (ANN-MLP-DDI models). The newly developed model was tested for DDI prediction using PERSIANN, and compared with the calculated DDI original from WSs. The results positively revealed that the ANN-MLP-DDI models showed high performance (Correlation coefficient r= 0.981) for DDI prediction against the DDI original from WSs. It can be concluded that data-driven models are feasible for drought prediction, and this work could help water managers in mitigating drought impacts and in providing information for policy makers

References

Achite M., Jehanzaib M., Elshaboury N., and Kim T.W (2022). Evaluation of machine learning techniques for hydrological drought modeling: a case study of the Wadi Ouahrane Basin in Algeria. Water 14: 431. https://doi.org/10.3390/w14030431

Ashouri H, Nguyen P, Thorstensen A, Hsu KL, Sorooshian S, and Braithwaite D (2016). Assessing the efficacy of high-resolution satellite-based PERSIANN-CDR precipitation product in simulating streamflow. J. Hydrometeorol., 17:2061 – 2076. https://doi.org/10.1175/jhm-d-15-0192.1

Ashouri, H., Hsu, K. L., Sorooshian, S., Braithwaite, D.K., Knapp, K. R., Cecil, L. D., Nelson, B. R., and Prat, O. P. (2014). PERSIANN-CDR: daily precipitation climate data record from multi-satellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc., 96(1): 69-84. https://doi.org/10.1175/BAMS-D-13-00068.1

Awchi T.A. and Suliman A.H.A. Spatiotemporal assessment of meteorological drought using satellite-based precipitation data over Iraq (2021). IOP Conf. Ser.: Earth Environ. Sci., 779: 012052. https://doi.10.1088/1755-1315/779/1/012052

Barua, S., Ng, A.W.M., and Perera, B.J.C (2012). Artificial neural network–based drought forecasting using a nonlinear aggregated drought index. J. Hydrol. Eng., 17: 1408–1413. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000574

Beck, H. E., van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B., and de Roo, A. (2017). MSWEP: 3‐hourly 0.25 global gridded precipitation (1979 – 2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci., 21(1): 589 – 615. https://doi.org/10.5194/hess‐21‐589‐2017

Bouaziz M., Medhioub E., and Csaplovisc E (2021). A machine learning model for drought tracking and forecasting using remote precipitation data and a standardized precipitation index from arid regions. J. Arid. Environ., 189: 104478. https://doi.org/10.1016/j.jaridenv.2021.104478

Das, P., Zhang, Z., Ghosh, and Hang R. (2024). A hybrid ensemble learning merging approach for enhancing the super drought computation over Lake Victoria Basin. Sci Rep., 14: 13870. https://doi.org/10.1038/s41598-024-61520-6

Deo, R.C., Kisi, O., and Singh, V.P. (2017). Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model. Atmos. Res., 184: 149–175. https://doi.org/10.1016/j.atmosres.2016.10.004

Dikici M (2020). Drought analysis with different indices for the Asi Basin (Turkey). Sci. Rep., 10: 20739. https://doi.org/10.1038/s41598-020-77827-z

Dikshit, A., Pradhan, B., and Alamri, A.M. (2020). Short-Term Spatio-Temporal Drought Forecasting Using Random Forests Model at New South Wales, Australia. Appl. Sci., 10: 4254. https://doi.org/10.3390/app10124254

Ditthakit P, Pinthong S, Salaeh N, Weekaew J, Tran TT, and Pham QB (2023). Comparative study of machine learning methods and GR2M model for monthly runoff prediction. Ain Shams Eng. J., 14(4):101941. https://doi.org/10.1016/j.asej.2022.101941

Gibbs WJ, and Maher JV (1967). Rainfall Deciles as Drought Indicators. Bureau of Meteorology Bull. 48. Commonwealth of Australia, Melbourne, Australia. doi10.1016/S0022-1694(00)00340-1.

Guo, R.F., and Liu, Y.B. (2016). Evaluation of Satellite Precipitation Products with Rain Gauge Data at Different Scales: Implications for Hydrological Applications. Water, 8: 281. https://doi.org/10.3390/w8070281

Heim, R.R., Jr. (2002). A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc., 83: 1149–1166. https://doi.org/10.3390/w8070281

Ji X., Li Y., Luo X., He D., Guo R., Wang J., Bai Y., Yue C., and Liu C. (2020). Evaluation of bias correction methods for APHRODITE data to improve hydrologic simulation in a large Himalayan basin. Atmos. Res., 242: 104964. https://doi.org/10.1016/j.atmosres.2020.104964.

Khajehei, S., Ahmadalipour, A., and Moradkhani, H. (2018). An Effective Post ‐ Processing of the North American Multi‐Model Ensemble (NMME) Precipitation Forecasts over the Continental US. Clim. Dyn., 51: 457–472. https://doi.org/10.1007/s00382‐017‐3934‐0

Khan, U., Khalil, A., and Jan, S. (2024). Drought assessment in Kabul River basin using machine learnings. J. Agrometeorol., 26(3): 349–355. https://doi.org/10.54386/jam.v26i3.2674

Le, M.H., Perez, G.C., Solomatine, D., and Nguyen, L.B (2016). Meteorological drought forecasting based on climate signals using Artificial Neural Network—A case study in Khanhhoa Province Vietnam. Procedia Eng., 154: 1169–1175. https://doi.org/10.1016/j.proeng.2016.07.528

McKee T.B., Doeskin N.J., and Kleist J (1993). The relationship of drought frequency and duration to time scales. In: Proceedings of the. In: 8th conference on applied climatology. Anaheim, CA, Jan. 17–23, 1993. Am. Meteorol. Soc., Boston, pp179–184.

Nandgude, N., Singh, T.P., Nandgude, S., and Tiwari, M. (2023). Drought Prediction: A Comprehensive Review of Different Drought Prediction Models and Adopted Technologies. Sustainability, 2023, 15: 11684. https://doi.org/10.3390/su151511684

Nash JE, and Sutcliffe JV (1970). River flow Forecasting Through Conceptual Models Part I—a Discussion of Principles. J Hydrol., 10(3): 282–290. https://doi.org/10.1016/0022-1694(70)90255-6

Sridhara, S., Chaithra, G.M., and Gopakkali, P. (2021). Assessment and monitoring of drought in Chitradurga district of Karnataka using different drought indices. J. Agrometeorol., 23(2): 221–227. https://doi.org/10.54386/jam.v23i2.72

Suliman A. and Darus I.Z.M. (2019). Semi-distributed neural network models for streamflow prediction in a small catchment Pinang. Environ. Eng. Manage. J., 18(2):535–544. https://eemj.eu/index.php/EEMJ/article/view/3816

Suliman A.H.A., Darus I.Z.M, and Katimon A (2017). GIS-based rainfall-runoff neuro model for streamflow prediction. Int. J. Civ. Eng., 8(5): 235–240. https://doi.org/10.15866/irece.v8i5.12104

Suliman A.H.A., Katimon A. and Darus I.Z.M. (2020). Daily discharge simulation: combining semi-distributed GIS-based and artificial intelligence models. Intern. J. Hydrol. Sci. Technol., 10(5):471–486.

Suliman AHA, Awchi T, and Shahid S (2024) Drought deciles index for spatial and temporal assessment of satellite-based precipitation datasets. Phys Chem Earth A/B/C/,135:103624. https://doi.org/10.1016/j.pce.2024.103624

Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu, K. L. (2018). A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys., 56, 79 – 107. https://doi.org/10.1002/2017RG000574

Tigkas D, Vangelis H, Proutsos N, and Tsakiris G. (2022). Incorporating aSPI and eRDI in drought indices calculator (DrinC) software for agricultural drought characterization and monitoring. Hydrology 9(6):100. https://doi.org/10.3390/hydrology9060100

Wilhite D. A. and Glantz M. H. (1985). Understanding: The drought phenomenon: The role of definitions. Water Int., 10(3), 111 – 120. https://doi.org/10.1080/02508068508686328

Xia L., Zhao F., Mao K., Yuan Z., Zuo Z., and Xu T (2018). SPI-based analyses of drought changes over the past 60 years in China's major crop-growing areas. Remote Sens., 10 (2), 171. https://doi.org/10.3390/rs10020171

Xu, L., Chen, N., Zhang, X., and Chen, Z. (2018). An evaluation of statistical, NMME and hybrid models for drought prediction in China. J. Hydrol., 566, 235 – 249. https://doi.org/10.1016/j.jhydrol.2018.09.020

Zhong R, Chen X, Lai C, Wang Z, Lian Y, Yu H, and Wu X (2019). Drought monitoring utility of satellite-based precipitation products across mainland China. J Hydrol., 568:343–359. https://doi.org/10.3390/rs11121483

Zhu, Q., Luo, Y., Zhou, D., Xu, Y.-P., Wang, G., and Tian, Y. (2020). Drought prediction using in situ and remote sensing products with SVM over the Xiang River Basin, China. Nat. Hazards,105: 2161–2185. https://doi.org/10.1007/s11069-020-04394-x

Downloads

Published

01-12-2024

How to Cite

SULIMAN , A. H. A. (2024). Meteorological and satellite-based data for drought prediction using data-driven model. Journal of Agrometeorology, 26(4), 466–472. https://doi.org/10.54386/jam.v26i4.2734

Issue

Section

Research Paper

Categories