Prediction of pan evaporation in Chhattisgarh using machine learning techniques

Authors

  • RUPESH NAIK Department of CSIT, Guru Ghasidas Vishwavidyalaya, Central University, Bilaspur 495009 , Chhattisgarh, India
  • BABITA MAJHI Department of CSIT, Guru Ghasidas Vishwavidyalaya, Central University, Bilaspur 495009 , Chhattisgarh, India
  • DIWAKAR NAIDU Faculty of Agricultural Engineering, IGKV, Raipur 492012, Chhattisgarh, India

DOI:

https://doi.org/10.54386/jam.v27i1.2731

Keywords:

Pan evaporation, Deep learning, Deep Neural Network, Hybrid Model, Machine learning, Random Forest regressor

Abstract

Accurate measurement or estimation of evaporation loss is crucial for developing and successfully implementing water resource management strategies, irrigation planning, reservoir management etc. To predict the pan evaporation (EP) accurately for Raipur, Jagdalpur, and Ambikapur stations of Chhattisgarh, four deep learning models and three machine learning models were used and a hybrid model using Deep Neural Network (DNN) and Random Forest (RF) was proposed. Simulation results demonstrated that the hybrid model (DNN+RF) outperforms the rest with R2 of 0.964, 0.920, 0.894 for Raipur, Jagdalpur and Ambikapur respectively. It has been observed that the hybrid DNN+RF model demonstrated faster convergence compared to other models with high accuracy, making it efficient and well-suited for real-time applications such as irrigation scheduling and water resource management.

References

Abed, M., Imteaz, M. A., Ahmed, A. N., and Huang, Y. F. (2022). Modelling monthly pan evaporation utilising Random Forest and deep learning algorithms. Sci. Rep., 12(1): 13132. https://doi.org/10.1038/s41598-022-17263-3.

Allen, R. G., Pereira, L. S., Raes, D. and Smith, M. (1998). CropEvapotranspiration: Guidelines for computing crop waterrequirements. Irrigation and Drainage Paper 56, FAO ofthe United Nations, Rome. 300 pp

Breiman, L. (2001). Random Forests. Machine Learning, 45(1): 5–32. https://doi.org/10.1023/A:1010933404324

Dong, L., Zeng, W., Wu, L., Lei, G., Chen, H., Kumar Srivastava, A., and Gaiser, T. (2021). Estimating the pan evaporation in northwest China by coupling catboost with bat algorithm. Water (Switz.), 13(3): https://doi.org/10.3390/w13030256.

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural Comp., 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Ibrahim, M., and Elhafiz, R. (2023). Modeling an intrusion detection using recurrent neural networks. J. Eng. Res., 11(1), 100013. https://doi.org/10.1016/j.jer.2023.100013

Ji, C., Zou, X., Hu, Y., Liu, S., Lyu, L., and Zheng, X. (2019). XG-SF: An XGBoost classifier based on shapelet features for time series classification. Procedia Comput.Sci., 147: 24–28. https://doi.org/10.1016/J.PROCS.2019.01.179

Kumar, A., Sarangi, A., Singh, D. K., Mani, I., Bandyopadhyay, K. K., Dash, S., an Khanna, M. (2024). Evaluation of soft-computing techniques for pan evaporation estimation. J. Agrometeorol., 26(1): 56–62. https://doi.org/10.54386/jam.v26i1.2247

Lakhawat, S. S., Sharma, V., Singh, T. K., Patil, P., Priyadevi, S., and Gutam, S. (2024). Effects of pan evaporation-based drip irrigation levels on the performance of guava grown in Udaipur and Rewa regions of India. J. Agrometeorol., 26(1): 69–73. https://doi.org/10.54386/jam.v26i1.2306

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553): 436–444. https://doi.org/10.1038/nature14539.

Majhi, B., and Naidu, D. (2021). Pan evaporation modeling in different agroclimatic zones using functional link artificial neural network. Inf. Process. Agric., 8(1): 134–147. https://doi.org/10.1016/j.inpa.2020.02.007

Majhi, B., Naidu, D., Mishra, A. P., and Satapathy, S. C. (2020). Improved prediction of daily pan evaporation using Deep-LSTM model. Neural Comput. Appl., 32(12): 7823–7838. https://doi.org/10.1007/s00521-019-04127-7

Mehta, Rashmi and Vyas Pandey. (2015). Reference evapotranspiration (ETo) and crop water requirement (ETc) of wheat and maize in Gujarat. J. Agrometeorol., 17(1): 107–113. https://doi.org/10.54386/jam.v17i1.984

Mehta, Rashmi and Vyas Pandey (2018). “Crop Water Requirement-Evapotranspiration and Estimation” Educationist Press, Write and Print Publication New Delhi. Pp 106. ISBN 97893862863702

Moayedi, H., Ghareh, S., and Foong, L. K. (2022). Quick integrative optimizers for minimizing the error of neural computing in pan evaporation modeling. Eng. Comput., 38: 1331–1347. https://doi.org/10.1007/s00366-020-01277-4

Niknam, A., Zare, H. K., Hosseininasab, H., and Mostafaeipour, A. (2023). Developing an LSTM model to forecast the monthly water consumption according to the effects of the climatic factors in Yazd, Iran. J. Eng. Res., 11(1): 100028. https://doi.org/10.1016/j.jer.2023.100028

Sharma, V., Singh, P. K., Bhakar, S. R., Yadav, K. K., Lakhawat, S. S., and Singh, M. (2023). Pan evaporation and sensor-based approaches for irrigation scheduling for crop water requirement, growth, and yield of okra. J. Agrometeorol., 23(4): 389–395. https://doi.org/10.54386/jam.v23i4.142

Smola, A. J., and Schölkopf, B. (2004). A tutorial on support vector regression. Stat. Comp., 14(3):199–222. https://doi.org/10.1023/B:STCO.0000035301.49549.88

Srivastava, A. K., Naidu, D., Bhan, M., and Bal, L. M. (2022). Neural network based predictors for evaporation estimation at Jabalpur in central India. J.Sci. Ind. Res., 81(3): 319–328. https://doi.org/10.56042/jsir.v81i03.58166

Zhang, S. (2012). Nearest neighbor selection for iteratively kNN imputation. J. Syst. Softw., 85(11): 2541–2552. https://doi.org/10.1016/j.jss.2012.05.073

Downloads

Published

01-03-2025

How to Cite

NAIK, R., MAJHI, B., & NAIDU, D. (2025). Prediction of pan evaporation in Chhattisgarh using machine learning techniques. Journal of Agrometeorology, 27(1), 86–91. https://doi.org/10.54386/jam.v27i1.2731

Issue

Section

Research Paper

Categories