Trend analysis and change-point detection of temperature and rainfall in southern Peruvian Amazon and its relation to deforestation

Authors

  • ANDREA AUCAHUASI-ALMIDON Universidad Nacional Mayor de San Marcos. Facultad de Ingeniería Geológica, Minera, Metalúrgica y Geográfica. Lima 150101, Peru https://orcid.org/0000-0003-3109-0603
  • CARLOS CABRERA-CARRANZA Universidad Nacional Mayor de San Marcos. Facultad de Ingeniería Geológica, Departamento Académico de Ingeniería Geográfica. Lima 150101, Peru. https://orcid.org/0000-0002-5821-5886
  • JORGE GARATE-QUISPE National Amazonian University of Madre de Dios. Academic Department of Forestry and Environmental Engineering. Puerto Maldonado 17001, Peru https://orcid.org/0000-0002-7494-2274

DOI:

https://doi.org/10.54386/jam.v26i4.2687

Keywords:

Change point, climate change, climate variability, deforestation, Tambopata, Madre de Dios

Abstract

The study aimed to identify the change points, tendencies, and trends in climatic parameters (precipitation and temperatures) and to investigate their relationship with deforestation in the southeastern Peruvian Amazon (Tambopata). Rainfall and temperature data for the Puerto Maldonado station from 1970 to 2023 was used. Monthly, seasonal, and annual precipitation as well as temperature (maximum, minimum, and mean) were analyzed for possible trends using nonparametric Mann-Kendal statistic test, while the Pettitt test was employed to detect the abrupt change point in time series. The Spearman's correlation coefficient was used to identify the relationship between deforestation and climate parameters. The results revealed a rise in mean, minimum, and maximum temperatures. Mann Kendall and Sen’s slope revealed significant trends in the monthly, seasonal and annual temperatures in the study period. However, in contrast to the temperature variation trend, the monthly, seasonal and annual precipitation did not present a significant trend. Significant positive correlations were obtained between deforestation and temperatures but its association with precipitation was not significant.

References

Alarcón-Aguirre, G., Sajami, E., Vásquez, T., Ponce, L. V., Ramos, D., Rodríguez- Achata, L. and Garate-Quispe, J. (2023). Vegetation dynamics in lands degraded by gold mining in the southeastern Peruvian Amazon. Trees, For. People, 11:100369. https://doi.org/10.1016/j.tfp.2023.100369

Almeida, C., Oliveira, J., Delgado, R., Cubo, P. and Ramos, M. (2016). Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal Amazon, 1973–2013. Int. J. Climatol., 37(4): 2013–2026. https://doi.org/10.1002/joc.4831

Bakr, D., Al-Khalidi, J. and Hamid, B. (2024). Climate changes impact on the distribution of vegetation in Wasit and Nineveh regions of Iraq. J. Agrometeorol., 26(1): 87-91. https://doi.org/10.54386/jam.v26i1.2417

Cabral, B., Yanai, A., Graça, P.M. de A., Escada, M., de Almeida, C.M. and Fearnside, P.M. (2024). Amazon deforestation: A dangerous future indicated by patterns and trajectories in a hotspot of forest destruction in Brazil. J. Environ. Manage., 354: 120354. https://doi.org/10.1016/j.jenvman.2024.120354

Da Silva, P., Santos e Silva, C., Spyrides, M.C. and Andrade, L. (2019). Precipitation and air temperature extremes in the Amazon and northeast Brazil. Int. J. Climatol., 39(2): 579-595. https://doi.org/10.1002/joc.5829

De Souza, F., Duku, C. and Hein, L. (2023). Deforestation-induced changes in rainfall decrease soybean-maize yields in Brazil. Ecol. Modell., 486: 110533. https://doi.org/10.1016/j.ecolmodel.2023.110533

Espinoza, J.C., Ronchail, J., Guyot, J.L., Cochonneau, G., Naziano, F., Lavado, W., De Oliveira, E., Pombosa, R. and Vauchel, P. (2009). Spatio‐temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int. J. Climatol., 29(11): 1574–1594. https://doi.org/10.1002/joc.1791

Espinoza, J.C., Ronchail, J., Lavado, W., Cochonneau, G., Oliveira, E., Pombosa, R., Vauchel, P. and Guyot, J. (2010). Spatio-temporal rainfall variability in the Amazon basin and its relationship to regional hydrological variability. A particular focus in the Andean region. Rev. Peru. Geo-Atmosférica, 2(2): 99–130.

Fattah, M.A., Hasan, M.M., Dola, I.A., Morshed, S.R., Chakraborty, T., Kafy, A., Alsulamy, S., Khedher, K.M. and Shohan, A. (2024). Implications of rainfall variability on groundwater recharge and sustainable management in South Asian capitals: An in-depth analysis using Mann Kendall tests, continuous wavelet coherence, and innovative trend analysis. Groundw. Sustain. Dev., 24: 101060. https://doi.org/10.1016/j.gsd.2023.101060

Kendall, M.G. (1975). Rank Correlation Methods. (4th ed.). Griffin, pp. 160

Lagneaux, E.G., Callo-Concha, D., Speelman, E.N. and Descheemaeker, K. (2024). Panarchy to explore land use: a historical case study from the Peruvian Amazon. Sustain. Sci., 19:1187-1203. https://doi.org/10.1007/s11625-024-01502-9

Lavado, W., Labat, D., Ronchail, J., Espinoza, J. and Guyot, J. (2012). Trends in rainfall and temperature in the Peruvian Amazon -Andes basin over the last 40 years (1965–2007). Hydrol. Process., 27(20): 2944-2957. https://doi.org/10.1002/hyp.9418

Layza, R. and Gonzales, F. (2018). La deforestación y el cambio climatico en la provincia de San Martin periodo:1973-2014. Cienc. y Tecnol., 14(2): 19–30.

Lute, A.C. and Abatzoglou, J.T. (2021). Best practices for estimating near‐surface air temperature lapse rates. Int. J. Climatol., 41(S1): E110–E125. https://doi.org/10.1002/joc.6668

Maillard, O., Vides-Almonacid, R., Salazar, Á. and Larrea-Alcazar, D.M. (2022). Effect of Deforestation on Land Surface Temperature in the Chiquitania Region, Bolivia. Land, 12(1): 2. https://doi.org/10.3390/land12010002

Malhi, Y. and Wright, J. (2004). Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos. Trans. R. Soc. London. Ser. B Biol. Sci., 359(1443): 311–329. https://doi.org/10.1098/rstb.2003.1433

Marengo, J.A. and Camargo, C.C. (2008). Surface air temperature trends in Southern Brazil for 1960–2002. Int. J. Climatol., 28(7): 893–904. https://doi.org/10.1002/joc.1584

Mesia, J. (2015). Deforestación en el eje vial Iquitos y su relacion con la variabilidad climática local a traves de los años. Universidad Nacional de la Amazonia Peruana, pp. 83

Pettitt, A.N. (1979). A Non-Parametric Approach to the Change-Point Problem. Appl. Stat., 28(2): 126–135. https://doi.org/10.2307/2346729

Pisconte, J.N., Vega, C.M., Sayers, C.J., Sevillano-Ríos, C.S., Pillaca, M., Quispe, E., Tejeda, V., Ascorra, C., Silman, M.R. and Fernandez, L.E. (2024). Elevated mercury exposure in bird communities inhabiting Artisanal and Small-Scale Gold Mining landscapes of the southeastern Peruvian Amazon. Ecotoxicology, 33:472–483. https://doi.org/10.1007/s10646-024-02740-4

Restrepo‐Coupe, N., O’Donnell, B., Longo, M., Alves, L.F., Campos, K.S., da Araujo, A.C., de Oliveira, R.C., Prohaska, N., da Silva, R., Tapajos, R., Wiedemann, K.T., Wofsy, S.C. and Saleska, S.R. (2023). Asymmetric response of Amazon forest water and energy fluxes to wet and dry hydrological extremes reveals onset of a local drought‐induced tipping point. Glob. Chang. Biol., 29(21): 6077–6092. https://doi.org/10.1111/gcb.16933

Reygadas, Y., Spera, S.A. and Salisbury, D.S. (2023). Effects of deforestation and forest degradation on ecosystem service indicators across the Southwestern Amazon. Ecol. Indic., 147: 109996. https://doi.org/10.1016/j.ecolind.2023.109996

Saatchi, S.S., Harris, N.L., Brown, S., Lefsky, M., Mitchard, E.T., Salas, W., Zutta, B. R., Buermann, W., Lewis, S.L., Hagen, S., Petrova, S., White, L., Silman, M. and Morel, A. (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci., 108(24): 9899–9904. https://doi.org/10.1073/pnas.1019576108

Sen, P.K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc., 63(324): 1379–1389. https://doi.org/10.1080/01621459.1968.10480934

Sridhara, S. and Gopakkali, P. (2021). Trend and change point detection of seasonal rainfall for effective crop planning over southern transition zone of Karnataka, India. J. Agrometeorol., 23(3): 316-323. https://doi.org/10.54386/jam.v23i3.36

Silva, R., Lopes, A. and Santos, C. (2023). Deforestation and fires in the Brazilian Amazon from 2001 to 2020: Impacts on rainfall variability and land surface temperature. J. Environ. Manage., 326: 116664. https://doi.org/10.1016/j.jenvman.2022.116664

Smith, C., Baker, J.C.A. and Spracklen, D. V. (2023). Tropical deforestation causes large reductions in observed precipitation. Nature, 615(7951): 270–275. https://doi.org/10.1038/s41586-022-05690-1

Swami, P. (2024). Trend analysis and change-point detection of monsoon rainfall in Uttarakhand and its impact on vegetation productivity. J. Agrometeorol., 26(1):103-108. https://doi.org/10.54386/jam.v26i1.2214

Umeh, S.C. and Gil-Alana, L.A. (2024). Trends in temperatures in Sub-Saharan Africa. Evidence of global warming. J. African Earth Sci., 213: 105228. https://doi.org/10.1016/j.jafrearsci.2024.105228

Uwizewe, C., Jianping, L., Habumugisha, T. and Bello, A. (2024). Investigation of the Historical Trends and Variability of Rainfall Patterns during the March–May Season in Rwanda. Atmosphere, 15(5): 609. https://doi.org/10.3390/atmos15050609

Downloads

Published

01-12-2024

How to Cite

AUCAHUASI-ALMIDON, A., CABRERA-CARRANZA, C., & GARATE-QUISPE, J. (2024). Trend analysis and change-point detection of temperature and rainfall in southern Peruvian Amazon and its relation to deforestation. Journal of Agrometeorology, 26(4), 425–430. https://doi.org/10.54386/jam.v26i4.2687

Issue

Section

Research Paper

Categories