Quantifying energy fluxes in Tarai region of India during post-monsoon season: Insights from METRIC model, ET station and remote sensing

Authors

  • ABHISHEK DANODIA Agriculture & Soils Department, Indian Institute of Remote Sensing, Dehradun, Uttarakhand, India; GB Pant University of Agriculture & Technology, Uttarakhand, India
  • N.R. PATEL Agriculture & Soils Department, Indian Institute of Remote Sensing, Dehradun, Uttarakhand, India
  • SURESH KUMAR Indian Institute of Remote Sensing, Dehradun, Uttarakhand, India
  • R.P. SINGH Indian Institute of Remote Sensing, Dehradun, Uttarakhand, India
  • ANURAG SATPATHI GB Pant University of Agriculture & Technology, Uttarakhand, India
  • PRAKASH CHAUHAN National Remote Sensing Centre, Hyderabad, India
  • A. S. NAIN GB Pant University of Agriculture & Technology, Uttarakhand, India

DOI:

https://doi.org/10.54386/jam.v26i3.2618

Keywords:

Evapotranspiration, METRIC model, Large aperture scintillometer, remote sensing, sugarcane

Abstract

Accurate evapotranspiration (ET) assessment is crucial for agricultural water management, encompassing crop water requirements, irrigation scheduling, water budgeting and drought monitoring. This study integrates remote sensing-based surface energy balance model with in-situ ET measurements to evaluate surface energy fluxes and ET in Pantnagar, Tarai region. The Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model, using high-resolution remote sensing data, was validated against observations from an ET station equipped with large aperture scintillometer and micrometeorological tower, situated in sugarcane farm at Govind Ballabh Pant University of Agriculture & Technology (GBPUA&T), Pantnagar. On November 13, 2021, METRIC and Landsat-9 satellite data estimated an instantaneous ET of 7.39 mm day-1, closely aligned with the observed value of 6.72 mm day-1 recorded by the ET station. The findings confirm the METRIC model's high accuracy for spatial ET estimation and its associated micrometeorological variables. This study underscores the utility of the METRIC model, ET station and remote sensing in determining ET and energy flux which may be further utilised in the estimation of crop water requirement, energy fluxes and irrigation water management for sugarcane cultivation in the Tarai region.

References

Allen, R. G., Pereira, L. S., Raes, D. and Smith, M. (1998). Crop evapotranspiration - Guidelines for computing crop water requirements FAO irrigation and drainage paper No. 56. https://www.fao.org/3/X0490E/x0490e00.html

Allen, R.G., Tasumi, M., Morse, A., Trezza, R., Wright, J.L., Bastiaanssen, W., Kramber, W., Lorite, I. and Robison, C.W. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications. J. Irrig. Drain. Eng., 133: 395–406.

Allen, R.G., Walter, I.A., Elliot, R., Howell, T., Itenfisu, D. and Jensen, M. (2005). The ASCE standardized reference evapotranspiration equation. In: Final Rep., National Irrigation Symp. ASCEEWRI Task Committee, Phoenix.

Bowen, I.S. (1926). The ratio of heat losses by conduction and evaporation from any surface. Phys. Rev., 27: 779–789.

Da Silva, N.D., de Oliveira, A.S. and Filho, M.A.C. (2024). Evapotranspiration over a processing cassava field: a comparative analysis of micrometeorological methods and remote sensing. Theor. Appl. Climatol. https://doi.org/10.1007/s00704-024-05008-3

de Bruin, H.A.R. and Wang, J. (2017). Scintillometry : a review. https://www.researchgate.net/publication/316285424_Scintillometry_a_review#fullTextFileContent

Danodia, A., Patel, N.R., Sehgal, V.K. and Singh, R.P. (2024). Surface energy fluxes and energy balance closure using large aperture scintillometer-based ET station on heterogeneous agricultural landscape in North India. J. Agrometeorol., 26(1): 18–24. https://doi.org/10.54386/jam.v26i1.2447

Danodia, A., Sehgal, V.K., Patel, N.R., Dhakar, R., Mukherjee, J., Saha, S.K. and Senthil Kumar, A. (2017). Assessment of large aperture scintillometry for large-area surface energy fluxes over an irrigated cropland in North India. J. Earth Syst. Sci., 126. https://doi.org/10.1007/s12040-017-0847-6

Holland, S., Heitman, J.L., Howard, A., Sauer, T.J., Giese, W., Ben-Gal, A., Agam, N., Kool, D. and Havlin, J. (2013). Micro-Bowen ratio system for measuring evapotranspiration in a vineyard interrow. Agric. For. Meteorol., 177: 93–100. https://doi.org/10.1016/j.agrformet.2013.04.009

Javadian, M., Behrangi, A., Gholizadeh, M. and Tajrishy, M. (2019). METRIC and WaPOR Estimates of Evapotranspiration over the Lake Urmia Basin: Comparative Analysis and Composite Assessment. Water, 11, 1647: 1–19.

Liu, S.M., Xu, Z.W., Zhu, Z.L., Jia, Z.Z. and Zhu, M.J. (2013). Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. J. Hydrol., 487: 24–38. https://doi.org/10.1016/j.jhydrol.2013.02.025

Madugundu, R., Al-Gaadi, K.A., Tola, E., Hassaballa, A.A. and Patil, V.C. (2017). Performance of the METRIC model in estimating evapotranspiration fluxes over an irrigated field in Saudi Arabia using Landsat-8 images. Hydrol. Earth Sys. Sci., 21(12): 6135-6151.

Mallareddy, M., Thirumalaikumar, R., Balasubramanian, P., Naseeruddin, R., Nithya, N., Mariadoss, A., Narayanasamy Eazhilkrishna, N., Choudhary, A.K., Deiveegan, M., Subramanian E., Padmaja, B. and Vijayakumar, S. (2023). Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies. Water, 15(10): 1802.

Penman, H.L. (1948). Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 193: 120–145.

Priestley, C.H.B. and Taylor, R.J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 100: 81–92.

Satpathi, A., Danodia, A., Nain, A.S., Dhyani, M., Vishwakarma, D.K., Dewidar, A.Z. and Mattar, M.A. (2024). Estimation of crop evapotranspiration using statistical and machine learning techniques with limited meteorological data: a case study in Udham Singh Nagar, India. Theor. Appl. Climatol. https://doi.org/10.1007/s00704-024-04953-3

Shukla, S. K., Sharma, L., Awasthi, S. K. and Pathak, A. D. (2017). Sugarcane in India. Package of practices for different agro–climatic zones, All Indian Coordinated Research Project on Sugarcane, IISR Lucknow, Uttar Pradesh, 1-64.

Sudarsan, J. S., Thattai, D., Shah, U. K. and Mitra, A. (2016). Micrometeorological tower observations and their importance in atmospheric modelling and space technology. Ind. J. Sci. Tech., 9(42):1-6, DOI: 10.17485/ijst/2016/v9i42/104594

Zheng, C., Liu, S., Song, L., Xu, Z., Guo, J., Ma, Y., Ju, Q. and Wang, J. (2023). Comparison of sensible and latent heat fluxes from optical-microwave scintillometers and eddy covariance systems with respect to surface energy balance closure. Agric. For. Meteorol., 331: 109345.

Downloads

Published

01-09-2024

How to Cite

DANODIA, A., PATEL, N., SURESH KUMAR, SINGH, R., SATPATHI, A., CHAUHAN, P., & A. S. NAIN. (2024). Quantifying energy fluxes in Tarai region of India during post-monsoon season: Insights from METRIC model, ET station and remote sensing. Journal of Agrometeorology, 26(3), 271–278. https://doi.org/10.54386/jam.v26i3.2618

Most read articles by the same author(s)

<< < 1 2