Weather based paddy yield prediction using machine learning regression algorithms

Authors

  • DHINAKARAN SAKTHIPRIYA Department of Applied Mathematics & Computational Science, Thiagarajar College of Engineering, Madurai 625 015, Tamil Nadu
  • THANGAVEL CHANDRAKUMAR Department of Applied Mathematics & Computational Science, Thiagarajar College of Engineering, Madurai 625 015, Tamil Nadu

DOI:

https://doi.org/10.54386/jam.v26i3.2598

Keywords:

Paddy seed, Hybrid machine learning model, Linear regression (LR), Random Forest regression (RFR), Support vector regression (SVR), Cat boost regression (CBR).

Abstract

Paddy is a major crop in India which is highly affected by the weather variables resulting in drastic reduction of its yield; adverse all the variables drastically reduce the paddy yield. In this research, machine learning model was developed for prediction of paddy yield production by linear regression (LR), random forest regression (RFR), support vector regression (SVR), cat boost regression (CBR), and hybrid machine learning with variance inflation factor (VIF) LR-VIF, RFR-VIF, SVR-VIF, and CBR-VIF techniques. The dataset consists of variables (weather) for more than 15 years collected for the study area which is Madurai district, Tamil Nadu in India. Analysis was carried out by fixing 70% of data calibration & remaining 30% for validation in Jupyter notebook (Python programming). Results showed that CBR-VIF performed having nRMSE value 1.23 to 1.40% for Madurai South, nRMSE value 0.56 to 1.40% for Melur, nRMSE value 1.10 to 1.25% for Usilampatti, and nRMSE value 0.75 to 1.10% for Thirumangalam. The hybrid model of CBR along with VIF and then CBR model has shown improvement with high influenced weather variables such as maximum temperature, minimum temperature, rainfall normal, and actual rainfall.

References

Ali, S. M., Das, B., and Kumar, D. (2021). Machine learning based crop recommendation system for local farmers of Pakistan. Revista Geintec-Gestao Inovacao E Tecnologias, 11(4): 5735-5746.

Ekanayake, P., Rankothge, W., Weliwatta, R., and Jayasinghe, J. W. (2021). Machine learning modelling of the relationship between weather and paddy yield in Sri Lanka. J. Maths., 2021(1): 9941899.

Elbasi, E., Zaki, C., Topcu, A. E., Abdelbaki, W., Zreikat, A. I., Cina, E., and Saker, L. (2023). Crop prediction model using machine learning algorithms. Applied Sci., 13(16): 9288.

Joshua, S. V., Priyadharson, A. S. M., Kannadasan, R., Khan, A. A., Lawanont, W., Khan, F. A., ... & Ali, M. J. (2022). Crop yield prediction using machine learning approaches on a wide spectrum. Comp., Materials Continua, 72(3): 5663-5679.

Joshua, V., Priyadharson, S. M., and Kannadasan, R. (2021). Exploration of machine learning approaches for paddy yield prediction in eastern part of Tamilnadu. Agronomy, 11(10): 2068.

Krithika, K. M., Maheswari, N., and Sivagami, M. (2022). Models for feature selection and efficient crop yield prediction in the groundnut production. Res. Agric. Eng, 68(3), 131-141.

Kumar, N., Pisal, R. R., Shukla, S. P., and Pandey, K. K. (2014). Crop yield forecasting of paddy, sugarcane and wheat through linear regression technique for south Gujarat. Mausam, 65(3): 361-364.

Kumar, S., Attri, S. D., and Singh, K. K. (2019). Comparison of Lasso and stepwise regression technique for wheat yield prediction. J. Agrometeorol., 21(2): 188-192. https://doi.org/10.54386/jam.v21i2.231

Leng, G., and Hall, J. W. (2020). Predicting spatial and temporal variability in crop yields: an inter-comparison of machine learning, regression and process-based models. Environmental research letters: ERL [Web site], 15(4): 044027.

Nischitha, K., Vishwakarma, D., Ashwini, M. N., and Manjuraju, M. R. (2020). Crop prediction using machine learning approaches. Intern. J. Engg. Res. Techn. (IJERT), 9(08):23-26.

Pudumalar, S., Ramanujam, E., Rajashree, R. H., Kavya, C., Kiruthika, T., & Nisha, J. (2017, January). Crop recommendation system for precision agriculture. In 2016 eighth international conference on advanced computing (ICoAC) (pp. 32-36). IEEE.

Saravanan, K. S., and Bhagavathiappan, V. (2022). A comprehensive approach on predicting the crop yield using hybrid machine learning algorithms. J. Agrometeorol., 24(2):179-185. https://doi.org/10.54386/jam.v24i2.1561

Setiya, P. and Nain, A.S., (2021). Development of yield prediction model of rice crop for hilly and plain terrains of Uttarakhand. J. Agrometeorol, 23(4):452-456. https://doi.org/10.54386/jam.v23i4.162

Shankar, T., Malik, G. C., Banerjee, M., Dutta, S., Praharaj, S., Lalichetti, S., ... & Hossain, A. (2022). Prediction of the effect of nutrients on plant parameters of rice by artificial neural network. Agron., 12(9): 2123.

Rakhee, Singh, A., and Kumar, A. (2018). Weather based fuzzy regression models for prediction of rice yield. J. Agrometeorol., 20(4): 297-301. https://doi.org/10.54386/jam.v20i4.569

Sridhara, S., Soumya, B., and Kashyap, G. R. (2024). Multistage sugarcane yield prediction using machine learning algorithms. J. Agrometeorol., 26(1): 37-44. https://doi.org/10.54386/jam.v26i1.2411

Zhou, Q., & Ismaeel, A. (2021). Integration of maximum crop response with machine learning regression model to timely estimate crop yield. Geo-spatial Information Sci., 24(3): 474-483.

Downloads

Published

01-09-2024

How to Cite

SAKTHIPRIYA , D., & THANGAVEL CHANDRAKUMAR. (2024). Weather based paddy yield prediction using machine learning regression algorithms. Journal of Agrometeorology, 26(3), 344–348. https://doi.org/10.54386/jam.v26i3.2598

Issue

Section

Research Paper

Categories