Impacts of rainfall and temperature on photoperiod insensitive sorghum cultivar : model evaluation and sensitivity analysis
DOI:
https://doi.org/10.54386/jam.v21i3.248Keywords:
Crop simulation model, photoperiod insensitive, sorghum, rainfall, temperatureAbstract
A combination of local-scale climate and crop simulation model were used to investigate the impacts of change in temperature and rainfall on photoperiod insensitive sorghum in the Sudanian zone of Mali. In this study, the response of temperature and rainfall to yield patterns of photoperiod insensitive sorghum (Sorghum bicolor L. Moench) using the Agricultural Production Systems Simulator (APSIM) model was evaluated. Following model calibration of the cultivar at varying sowing dates over two growing seasons (2013 and 2014), a long-term simulation was run using historical weather data (1981-2010) to determine the impacts of temperature and rainfall on grain yield, total biomass and water use efficiency at varying nitrogen fertilizer applications. The results showed that model performance was excellent with the lowest mean bias error (MBE) of -2.2 days for flowering and 1.4 days for physiological maturity. Total biomass and grain yield were satisfactorily reproduced, indicating fairly low RMSE values of 21.3% for total biomass and very low RMSE of 11.2 % for grain yield of the observed mean. Simulations at varying Nfertilizer application rate with increased temperature of 2 °C, 4 °C and 6 °C and decreased rainfall by 25 and 50 % (W-25% and W-50%) posed a highly significant risk to low yield compared to increase in rainfall. However, the magnitude of temperature changes showed a decline in grain yield by 10%, while a decrease in rainfall by W-25% and W-50% resulted in yield decline between 5% and 37%, respectively. Thus, climate-smart site-specific utilization of the photoperiod insensitive sorghum cultivar suggests more resilient and productive farming systems for sorghum in semi-arid regions of Mali.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is a human-readable summary of (and not a substitute for) the license. Disclaimer.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.