Comparative analysis of two parameter-dependent split window algorithms for the land surface temperature retrieval using MODIS TIR observations
DOI:
https://doi.org/10.54386/jam.v25i4.2286Keywords:
Atmospheric Radiative Transfer Equation, Land Surface Temperature, MODTRAN, MODIS, Split-WindowAbstract
MODIS Land Surface Temperature (LST) product is extensively used in agricultural studies like crop health assessment, soil moisture estimation, irrigation management, land use land cover change, air-temperature retrieval and crop water stress detection. Numerous studies have used Split Window (SW) algorithms to retrieve LST from MODIS TIR bands. Among them, some utilize Sensor View Angle Dependent (SVAD) or Columnar Water Vapor Dependent (CWVD) SW algorithms. Present study aims to make use of SVAD and CWVD SW algorithms and compare them to evaluate the LST retrieval accuracy over various land surface type. Theoretical accuracy assessment of the CWVD and SVAD algorithms demonstrates a good accuracy with the RMSE of 1.09K and 1.42K, respectively. The experimental retrieval of LST achieves exceptionally good accuracy, with a RMSE of 1.45K in the CWVD algorithm and 1.80K in the SVAD algorithm, particularly in heterogeneous regions. In homogeneous regions, the RMSE values are 1.14K in CWVD and 1.10K in SVAD. Both algorithms exhibit satisfactory accuracy; nevertheless, the application of these algorithms may vary in agricultural contexts. Based on the obtained results and the inclusion of required parameters, we have arrived at a conclusion regarding the superior performance of the SVAD compared to the CWVD for LST retrieval.
References
Coll, C., Caselles, V., Sobrino, J. A. and Valor, E. (1994). On the atmospheric dependence of the split-window equation for land surface temperature. Int. J. Remote Sens., 15(1), 105-122. https://doi.org/10.1080/01431169408954054
Borbas, E., Seemann, S. W., Huang, H. L., Li, J. and Menzel, W. P. (2005). Global profile training database for satellite regression retrievals with estimates of skin temperature and emissivity. In Proc. 14th Int. ATOVS Study Conf., 763-770. http://cimss.ssec.wisc.edu/training_data/data/itsc14_borbas_trainingData.pdf
Dave, J. A., Pandya, M. R., Pathak, V. N., Shah, D. B. and Trivedi, H. J. (2021). Development of View Angle Dependent Split-Window Algorithm for Retrieving Land Surface Temperature From Modis Thermal Infrared Data. In 2021 IEEE International India Geoscience and Remote Sensing Symposium (InGARSS), 261-264. IEEE. https://doi.org/10.1109/InGARSS51564.2021.9791897
Fisher, J. B., Lee, B., Purdy, A. J., Halverson, G. H., Dohlen, M. B., Cawse‐Nicholson, K., ... and Hook, S. (2020). ECOSTRESS: NASA's next generation mission to measure evapotranspiration from the international space station. Water Resour. Res., 56(4), e2019WR026058. https://doi.org/10.1029/2019WR026058
Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J. S., Hook, S., & Kahle, A. B. (1998). A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens., 36(4), 1113-1126. https://doi.org/10.1109/36.700995
Heinemann, S., Siegmann, B., Thonfeld, F., Muro, J., Jedmowski, C., Kemna, A., ... and Rascher, U. (2020). Land surface temperature retrieval for agricultural areas using a novel UAV platform equipped with a thermal infrared and multispectral sensor. Remote Sens., 12(7), 1075. https://doi.org/10.3390/rs12071075
Hu, T., Renzullo, L. J., van Dijk, A. I., He, J., Tian, S., Xu, Z., ... and Liu, Q. (2020). Monitoring agricultural drought in Australia using MTSAT-2 land surface temperature retrievals. Remote Sens. Environ., 236, 111419. https://doi.org/10.1016/j.rse.2019.111419
Hulley, G. C., Göttsche, F. M., Rivera, G., Hook, S. J., Freepartner, R. J., Martin, M. A., ... and Johnson, W. R. (2021). Validation and quality assessment of the ECOSTRESS level-2 land surface temperature and emissivity product. IEEE Trans. Geosci. Remote Sens., 60, 1-23. https://doi.org/10.1109/TGRS.2021.3079879
Jiménez-Muñoz, J. C., and Sobrino, J. A. (2009). A single-channel algorithm for land-surface temperature retrieval from ASTER data. IEEE Geosci Remote Sens., 7(1), 176-179. https://doi.org/10.1109/LGRS.2009.2029534
Li, Z. L. and Becker, F. (1993). Feasibility of land surface temperature and emissivity determination from AVHRR data. Remote Sens. Environ, 43(1), 67-85. https://doi.org/10.1016/0034-4257(93)90065-6
Li, Z. L., Tang, B. H., Wu, H., Ren, H., Yan, G., Wan, Z., ... and Sobrino, J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ, 131, 14-37. https://doi.org/10.1016/j.rse.2012.12.008
Pandya, M. R., Shah, D. B., Trivedi, H. J. and Panigrahy, S. (2011). Simulation of at-sensor radiance over land for proposed thermal channels of Imager payload onboard INSAT-3D satellite using MODTRAN model. J. Earth Syst. Sci., 120, 19-25. https://doi.org/10.1007/s12040-011-0014-4
Pandya, M. R., Shah, D. B., Trivedi, H. J., Darji, N. P., Ramakrishnan, R., Panigrahy, S., ... and Kirankumar, A. S. (2014). Retrieval of land surface temperature from the Kalpana-1 VHRR data using a single-channel algorithm and its validation over western India. ISPRS J. Photogramm Remote Sens., 94, 160-168. https://doi.org/10.1016/j.isprsjprs.2014.05.004
Parmar, H. V. and Gontia, N. K. (2019). Derivation of land surface temperature using satellite imagery and its relationship with vegetation index. J. Agrometeorol., 21(1), 104-106. https://doi.org/10.54386/jam.v21i1.215
Prabhakara, C., Dalu, G. and Kunde, V. G. (1974). Estimation of sea surface temperature from remote sensing in the 11‐to 13‐μm window region. J. Geophys. Res., 79(33), 5039-5044. https://doi.org/10.1029/JC079i033p05039
Price, J. C. (1984). Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer. JGR Atmosph., 89(D5), 7231-7237. https://doi.org/10.1029/JD089iD05p07231
Sayre, R., Karagulle, D., Frye, C., Boucher, T., Wolff, N. H., Breyer, S., ... & Possingham, H. (2020). An assessment of the representation of ecosystems in global protected areas using new maps of World Climate Regions and World Ecosystems. Glob. Ecol. Conserv., 21, e00860. https://doi.org/10.1016/j.gecco.2019.e00860
Shah, D. B., Pandya, M. R., Trivedi, H. J. and Jani, A. R. (2012). Estimation of minimum and maximum air temperature using MODIS data over Gujarat. J. Agrometeorol., 14(2), 111-118. https://doi.org/10.54386/jam.v14i2.1403
Sobrino, J. A., Caselles, V. and Coll, C. (1993). Theoretical split-window algorithms for determining the actual surface temperature. Il Nuovo Cimento C, 16, 219-236. https://doi.org/10.1007/BF02524225
Valor, E., Coll, C., Caselles, V. and Niclos, R. (2003). The Adjusted Normalized Emissivity Method (ANEM) for land surface temperature and emissivity recovery. In IGARSS 2003. 2003 IEEE International Geosci. Remote Sens. Symp.. Proceed. (IEEE Cat. No. 03CH37477), 5, 3088-3090). IEEE. https://doi.org/10.1109/IGARSS.2003.1294692
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 JALPESH A. DAVE, MEHUL R. PANDYA, DHIRAJ B. SHAH, HASMUKH K. VARCHAND, PARTHKUMAR N. PARMAR, HIMANSHU J. TRIVEDI, VISHAL N. PATHAK, MANOJ SINGH, DISHA B. KARDANI
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This is a human-readable summary of (and not a substitute for) the license. Disclaimer.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.