Comparative analysis of two parameter-dependent split window algorithms for the land surface temperature retrieval using MODIS TIR observations

Authors

  • JALPESH A. DAVE N. V. Patel College of Pure and Applied Sciences, CVM University, Vallabh Vidyanagar 388120, Gujarat, India
  • MEHUL R. PANDYA Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380015, Gujarat, India
  • DHIRAJ B. SHAH Sir P.T. Sarvajanik College of Science, Veer Narmad South Gujrat University, Surat 395001, Gujarat, India
  • HASMUKH K. VARCHAND N. V. Patel College of Pure and Applied Sciences, CVM University, Vallabh Vidyanagar 388120, Gujarat, India
  • PARTHKUMAR N. PARMAR N. V. Patel College of Pure and Applied Sciences, CVM University, Vallabh Vidyanagar 388120, Gujarat, India
  • HIMANSHU J. TRIVEDI N. V. Patel College of Pure and Applied Sciences, CVM University, Vallabh Vidyanagar 388120, Gujarat, India
  • VISHAL N. PATHAK Sir P.T. Sarvajanik College of Science, Veer Narmad South Gujrat University, Surat 395001, GujaratSir P.T. Sarvajanik College of Science, Veer Narmad South Gujrat University, Surat 395001, Gujarat, India
  • MANOJ SINGH N. V. Patel College of Pure and Applied Sciences, CVM University, Vallabh Vidyanagar 388120, Gujarat, India
  • DISHA B. KARDANI Sir P.T. Sarvajanik College of Science, Veer Narmad South Gujrat University, Surat 395001, Gujarat, India

DOI:

https://doi.org/10.54386/jam.v25i4.2286

Keywords:

Atmospheric Radiative Transfer Equation, Land Surface Temperature, MODTRAN, MODIS, Split-Window

Abstract

MODIS Land Surface Temperature (LST) product is extensively used in agricultural studies like crop health assessment, soil moisture estimation, irrigation management, land use land cover change, air-temperature retrieval and crop water stress detection. Numerous studies have used Split Window (SW) algorithms to retrieve LST from MODIS TIR bands. Among them, some utilize Sensor View Angle Dependent (SVAD) or Columnar Water Vapor Dependent (CWVD) SW algorithms. Present study aims to make use of SVAD and CWVD SW algorithms and compare them to evaluate the LST retrieval accuracy over various land surface type. Theoretical accuracy assessment of the CWVD and SVAD algorithms demonstrates a good accuracy with the RMSE of 1.09K and 1.42K, respectively. The experimental retrieval of LST achieves exceptionally good accuracy, with a RMSE of 1.45K in the CWVD algorithm and 1.80K in the SVAD algorithm, particularly in heterogeneous regions. In homogeneous regions, the RMSE values are 1.14K in CWVD and 1.10K in SVAD. Both algorithms exhibit satisfactory accuracy; nevertheless, the application of these algorithms may vary in agricultural contexts. Based on the obtained results and the inclusion of required parameters, we have arrived at a conclusion regarding the superior performance of the SVAD compared to the CWVD for LST retrieval.

References

Coll, C., Caselles, V., Sobrino, J. A. and Valor, E. (1994). On the atmospheric dependence of the split-window equation for land surface temperature. Int. J. Remote Sens., 15(1), 105-122. https://doi.org/10.1080/01431169408954054

Borbas, E., Seemann, S. W., Huang, H. L., Li, J. and Menzel, W. P. (2005). Global profile training database for satellite regression retrievals with estimates of skin temperature and emissivity. In Proc. 14th Int. ATOVS Study Conf., 763-770. http://cimss.ssec.wisc.edu/training_data/data/itsc14_borbas_trainingData.pdf

Dave, J. A., Pandya, M. R., Pathak, V. N., Shah, D. B. and Trivedi, H. J. (2021). Development of View Angle Dependent Split-Window Algorithm for Retrieving Land Surface Temperature From Modis Thermal Infrared Data. In 2021 IEEE International India Geoscience and Remote Sensing Symposium (InGARSS), 261-264. IEEE. https://doi.org/10.1109/InGARSS51564.2021.9791897

Fisher, J. B., Lee, B., Purdy, A. J., Halverson, G. H., Dohlen, M. B., Cawse‐Nicholson, K., ... and Hook, S. (2020). ECOSTRESS: NASA's next generation mission to measure evapotranspiration from the international space station. Water Resour. Res., 56(4), e2019WR026058. https://doi.org/10.1029/2019WR026058

Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J. S., Hook, S., & Kahle, A. B. (1998). A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens., 36(4), 1113-1126. https://doi.org/10.1109/36.700995

Heinemann, S., Siegmann, B., Thonfeld, F., Muro, J., Jedmowski, C., Kemna, A., ... and Rascher, U. (2020). Land surface temperature retrieval for agricultural areas using a novel UAV platform equipped with a thermal infrared and multispectral sensor. Remote Sens., 12(7), 1075. https://doi.org/10.3390/rs12071075

Hu, T., Renzullo, L. J., van Dijk, A. I., He, J., Tian, S., Xu, Z., ... and Liu, Q. (2020). Monitoring agricultural drought in Australia using MTSAT-2 land surface temperature retrievals. Remote Sens. Environ., 236, 111419. https://doi.org/10.1016/j.rse.2019.111419

Hulley, G. C., Göttsche, F. M., Rivera, G., Hook, S. J., Freepartner, R. J., Martin, M. A., ... and Johnson, W. R. (2021). Validation and quality assessment of the ECOSTRESS level-2 land surface temperature and emissivity product. IEEE Trans. Geosci. Remote Sens., 60, 1-23. https://doi.org/10.1109/TGRS.2021.3079879

Jiménez-Muñoz, J. C., and Sobrino, J. A. (2009). A single-channel algorithm for land-surface temperature retrieval from ASTER data. IEEE Geosci Remote Sens., 7(1), 176-179. https://doi.org/10.1109/LGRS.2009.2029534

Li, Z. L. and Becker, F. (1993). Feasibility of land surface temperature and emissivity determination from AVHRR data. Remote Sens. Environ, 43(1), 67-85. https://doi.org/10.1016/0034-4257(93)90065-6

Li, Z. L., Tang, B. H., Wu, H., Ren, H., Yan, G., Wan, Z., ... and Sobrino, J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ, 131, 14-37. https://doi.org/10.1016/j.rse.2012.12.008

Pandya, M. R., Shah, D. B., Trivedi, H. J. and Panigrahy, S. (2011). Simulation of at-sensor radiance over land for proposed thermal channels of Imager payload onboard INSAT-3D satellite using MODTRAN model. J. Earth Syst. Sci., 120, 19-25. https://doi.org/10.1007/s12040-011-0014-4

Pandya, M. R., Shah, D. B., Trivedi, H. J., Darji, N. P., Ramakrishnan, R., Panigrahy, S., ... and Kirankumar, A. S. (2014). Retrieval of land surface temperature from the Kalpana-1 VHRR data using a single-channel algorithm and its validation over western India. ISPRS J. Photogramm Remote Sens., 94, 160-168. https://doi.org/10.1016/j.isprsjprs.2014.05.004

Parmar, H. V. and Gontia, N. K. (2019). Derivation of land surface temperature using satellite imagery and its relationship with vegetation index. J. Agrometeorol., 21(1), 104-106. https://doi.org/10.54386/jam.v21i1.215

Prabhakara, C., Dalu, G. and Kunde, V. G. (1974). Estimation of sea surface temperature from remote sensing in the 11‐to 13‐μm window region. J. Geophys. Res., 79(33), 5039-5044. https://doi.org/10.1029/JC079i033p05039

Price, J. C. (1984). Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer. JGR Atmosph., 89(D5), 7231-7237. https://doi.org/10.1029/JD089iD05p07231

Sayre, R., Karagulle, D., Frye, C., Boucher, T., Wolff, N. H., Breyer, S., ... & Possingham, H. (2020). An assessment of the representation of ecosystems in global protected areas using new maps of World Climate Regions and World Ecosystems. Glob. Ecol. Conserv., 21, e00860. https://doi.org/10.1016/j.gecco.2019.e00860

Shah, D. B., Pandya, M. R., Trivedi, H. J. and Jani, A. R. (2012). Estimation of minimum and maximum air temperature using MODIS data over Gujarat. J. Agrometeorol., 14(2), 111-118. https://doi.org/10.54386/jam.v14i2.1403

Sobrino, J. A., Caselles, V. and Coll, C. (1993). Theoretical split-window algorithms for determining the actual surface temperature. Il Nuovo Cimento C, 16, 219-236. https://doi.org/10.1007/BF02524225

Valor, E., Coll, C., Caselles, V. and Niclos, R. (2003). The Adjusted Normalized Emissivity Method (ANEM) for land surface temperature and emissivity recovery. In IGARSS 2003. 2003 IEEE International Geosci. Remote Sens. Symp.. Proceed. (IEEE Cat. No. 03CH37477), 5, 3088-3090). IEEE. https://doi.org/10.1109/IGARSS.2003.1294692

Downloads

Published

30-11-2023

How to Cite

DAVE, J. A., PANDYA, M. R., SHAH, D. B., VARCHAND, H. K., PARMAR, P. N., TRIVEDI, H. J., PATHAK, V. N., SINGH, M., & KARDANI, D. B. (2023). Comparative analysis of two parameter-dependent split window algorithms for the land surface temperature retrieval using MODIS TIR observations. Journal of Agrometeorology, 25(4), 510–516. https://doi.org/10.54386/jam.v25i4.2286