Modelling adaptation strategies towards climate smart red gram production in Tamil Nadu


  • PRADIPA CHINNASAMY ICAR- KVK, Salem, Tamil Nadu Agricultural University, TamilNadu, India
  • PANNEERSELVAM SHANMUGAM Retired Professor of Agronomy, Tamil Nadu Agricultural University, India
  • GEETHALAKSHMI VELLINGIRI Vice Chancellor, Tamil Nadu Agricultural University, India
  • JAGANATHAN R Vice Chancellor, Periyar University, Salem, India
  • BHUVANEESWARI K. CARDS, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
  • S. VIGNESWARAN Institute of Forest Genetics and Tree Breeding, Coimbatore



Red gram, Climate change, climate smart agriculture, adaptation, Agroclimatic zones


Assessing the pulse of an important legume crop, red gram (Cajanus cajan L.) of Tamil Nadu under changing climate and framing adaptation strategies were formulated using the DSSAT model. The assessment was done for the popular variety of red gram, viz., CO(RG)7 with August 1st as sowing date, under constant CO2 (380ppm) and CO2 enrichment. The adaptation strategies such as altering the sowing date and 25 per cent increment in nitrogenous fertilizer were carried out with CO2 enrichment conditions.  The yield was found to be adversely affected by the warming scenario of the climate system without CO2 fertilization. With the incorporation of enriched CO2 data, the average yield increases until the end of the century, but with temporal and spatial variations. Among the different agro climatic zones of Tamil Nadu, highest yield was recorded in Western Zone and lowest in Southern Zone. There was no response to application of Nitrogenous fertilizer. July 15 sowing was identified to be the best sowing for the base as well as future period for CO(RG)7.


Bastin, J. F., Clark, E., Elliott, T., Hart, S., Van Den Hoogen, J., Hordijk, I., ... and Crowther, T. W. (2019). Understanding climate change from a global analysis of city analogues. PloS one, 14(7), e0217592.

Ivanova, M., and Popova, Z. (2021). Irrigation Scheduling of Maize Grown on a Vertisol Soil Under Changing Climate of Sofia’s Field. Acta Hortic. Regiotecturae, 24(s1), 1-7.

Kabote, S. J., Mamiro, D., Synnevåg, G., Urassa, J. K., Mattee, A. Z., Mbwambo, J. S., and Chingonikaya, E. E. (2012). Inter-annual anomaly and seasonal variability of rf and temperature in selected semi-arid areas of Tanzania. J. Continuing Educ. Ext.,4(2): 295-317

Keeling, C. D., Piper, S. C., Bacastow, R. B., Wahlen, M., Whorf, T. P., Heimann, M., and Meijer, H. A. (2001). Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. I. Global aspects.

Kiran, B. O., and Chimmad, V. P. (2018). Correlation Studies on Effect of Temperature Regimes on Phenology, Growing Degree Days, Heat Use Efficiency and Seed Yield in Chickpea (Cicer arietinum L.) Genotypes. . Int. J. Pure App. Biosci,, 2(6): 248-252.

Kumagai, E., Aoki, N., Masuya, Y., and Shimono, H. (2015). Phenotypic plasticity conditions the response of soybean seed yield to elevated atmospheric CO2 concentration. Plant Physiol., 169(3): 2021-2029.

Kumari, C. R., and Reddy, B. S. (2021). Yield response of redgram genotypes in rainfed arid regions of Andhra Pradesh. Pharma Innov. J., 10(7): 139-143.

Mishra, S., Singh, R., Kumar, R., Kalia, A., and Panigrahy, S. R. (2017). Impact of climate change on pigeon pea. Econ. Affairs, 62(3): 455-457.

Patil, D. D., Pandey, V., Gurjar, R., and Patel, H. P. (2018). Effect of intra-seasonal variation in temperature and rainfall on seed yield of pigeon pea cultivars using CROPGRO model. J. Agrometeorol., 20(4): 286-292.

Pradipa, C., Panneerselvam, S., Geethalakshmi, V., Bhuvaneeswari, K., and Maragatham, N. (2022). Potential impact of future climate change on spatial variability of blackgram yield over Tamil Nadu. J. Agrometeorol., 24(2):157-164.

Prasad, P. V., Boote, K. J., Allen Jr, L. H., and Thomas, J. M. (2002). Effects of elevated temperature and carbon dioxide on seed‐set and yield of kidney bean (Phaseolus vulgaris L.). Glob. Change Biol., 8(8): 710-721.

Rezaei, E. E., Siebert, S., Hüging, H., and Ewert, F. (2018). Climate change effect on wheat phenology depends on cultivar change. Scientific reports, 8(1), 1-10.

Saxena, K. B., Chauhan, Y. S., Sameer Kumar, C. V., Hingane, A. J., Kumar, R. V., Saxena, R. K., and Rao, G. V. R. (2018). Developing improved varieties of pigeonpea. In: Achieving sustainable cultivation of grain legumes, 2: 297-326.

Singh, P. (2023). Crop models for assessing impact and adaptation options under climate change. J. Agrometeorol., 25(1): 18-33.

Sreenivas, A. G., Desai, B. K., Umesh, M. R., and Usha, R. (2021). Elevated CO2 and temperature effect on canopy development and seed yield of sunflower (Helianthus anus L). J. Agrometeorol., 23(2): 264-267.

Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., . . .and Edmonds, J. A. (2011). RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim. Change, 109(1): 77. doi: 10.1007/s10584-011-0151-4

Tingem, M., and Rivington, M. (2009). Adaptation for crop agriculture to climate change in Cameroon: turning on the heat. Mitig. Adapt. Strat. Global Change, 14, 153-168.

Vanaja M., Ram Reddy P.R., Lakshmi N.J., Abdul Razak S.K., Vagheera P., Archana G., Yadav S.K., Maheswari M. and Venkateswarlu B. (2010). Response of seed yield and its components of red gram (Cajanus cajan L. Millsp.) to elevated CO2. Plant Soil Environ., 56: 458-462.

Yadav, M. K., Patel, C., Singh, R. S., Singh, K.... and Yadav, S. K. (2021). Assessment of climate change impact on different pigeonpea maturity groups in north Indian condition. J. Agrometeorol., 23(1): 82-92.




How to Cite

CHINNASAMY, P., SHANMUGAM, P., VELLINGIRI, G., R, J., K., B., & VIGNESWARAN, S. (2023). Modelling adaptation strategies towards climate smart red gram production in Tamil Nadu. Journal of Agrometeorology, 25(4), 525–531.