Comparison of weather-based wheat yield forecasting models for different districts of Uttarakhand using statistical and machine learning Techniques
DOI:
https://doi.org/10.54386/jam.v24i3.1571Keywords:
Forecast Model, Stepwise Multiple Linear Regression, Artificial Neural Network, Least Absolute Shrinkage and Selection Operator, Elastic Net, Ridge RegressionAbstract
The prediction of crop yield before harvest is crucial for facilitating the formulation and implementation of policies about food safety, transportation cost, and import-export, storage and marketing of agro-products. The weather plays a crucial role in crop growth and development. Therefore, models using weather variables can provide reliable forecasts for crop yield and choosing the right model for crop production forecasts can be difficult. Therefore in the present study, an attempt was made to find the best model for wheat yield forecast by using five different techniques viz. Stepwise Multiple Linear Regression (SMLR), Artificial Neural Network (ANN), Least Absolute Shrinkage and Selection Operator (LASSO), Elastic Net (ELNET) and Ridge regression. Historical wheat yield data (taken from the Directorate of Economics and Statistics, Ministry of Agriculture and Farmers Welfare) and weather data of past 18-20 years were collected for seven different districts of Uttarakhand. Analysis was carried out by fixing 80% of the data for calibration and remaining dataset for validation. The present study concluded that the performance of ANN was good for crop yield forecasting as compared to the other models based on the value of RMSE (0.005 - 0.474) and nRMSE (0.166 - 26.171).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 PARUL SETIYA, ANURAG SATPATHI , AJEET SINGH NAIN , BAPPA DAS
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is a human-readable summary of (and not a substitute for) the license. Disclaimer.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.