A comprehensive approach on predicting the crop yield using hybrid machine learning algorithms
DOI:
https://doi.org/10.54386/jam.v24i2.1561Keywords:
Principal component analysis, XGBoost Regression, AdaBoost Regression, Stacked Auto Encoder and Deep Neural Network.Abstract
Crop yield prediction is a complex task which uses historical data to predict how much yield can be obtained in a particular year. To predict accurate crop yield, a novel deep neural network named crop yield predicting deep neural network with XGBoost regression and AdaBoost regression algorithms were used. Further, in this research work, prediction models proposed are hybrid models, namely PCA-XGBoost, PCA-AdaBoost and the LSTM based Stacked Auto Encoder – Crop Yield Predicting Deep Neural Network (LSAE-CYPDNN) model for predicting the crop yield. The error metrics like Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Root Mean Squared Error (RMSE) were evaluated for the hybrid models. The result shows that the proposed hybrid LSAE-CYPDNN model yields much less MAE, MAPE and RMSE compared to the models PCA-AdaBoost and PCA-XGBoost.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 KRITHIKHA SANJU SARAVANAN , VELAMMAL BHAGAVATHIAPPAN
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is a human-readable summary of (and not a substitute for) the license. Disclaimer.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.