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ABSTRACT

Climatic variability and its behavior is a complex phenomenon that is directly associated with
uncertainties. In the climate change study, particularly in hydrological aspects, it is necessary to identify
the parameters (predictors) that are directly or indirectly associated with predictands. The forecasted
results are directly associated with the selection of predictors. In the present study, the statistical
downscaling model (SDSM) has been advocated to downscale the daily rainfall in Piperiya watershed of
Chhattisgarh state. SDSM is based on multiple linear regression (MLR) technique. The daily rainfall data
(1961-2001) of the Piperiya watershed in Chhattisgarh is considered as input (predictand) to the model.
The model has been calibrated and validated on the basis of rainfall period of 1961-1990 and 1991-2001
respectively with large scale predictors of National Centre for Environmental Prediction (NCEP) reanalysis
data. Finally, monthly rainfall is predicted on the basis of forecasted future daily rainfall for the periods of
2020s, 2050s and 2080s under the consideration of HadCM3 A2 and B2 emission scenarios.
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Climate change is a long drawn process which is

contributed by various factors that affect directly or indirectly

the various hydrological processes such as runoff.  Climate

change and its impact on water resources is difficult to assess

but is definitely felt at basin and regional scale.  Global

Circulation Models (GCMs) reflect the climatic conditions

at global as well as local levels and are based on concentration

of greenhouse gases (Mitchell et al., 1995). GCMs provide

the future forecasting of meteorological parameters under

different climatic scenario conditions. In case of precipitation,

GCMs have limited ability to forecast good result for daily

future time series (Mishra et al., 2014). Downscaling is the

technique, which provide the fine scale numerical values

from coarse resolution. Statistical downscaling is a regression

based downscaling which works on empirical relationship

between the local scale predictands and regional scale

predictor(s) (Bardossy, 1994; Bárdossy, 1997; Boroneant et

al., 2006; Goyal and Ojha, 2012; Goyal and Ojha, 2010).

Individual downscaling schemes differ depending on the

choice of mathematical transfer function, predictor variables

and statistical fitting procedure. The selection of predictors

indicate its behavior, dependency, correlation and the

principle components (Wilby and Wigley, 2000). Further,

regression models assume steady-state parameters under

future climate conditions.  The future climatic scenarios are

highly sensitive to the choice of predictor variables and

statistical transfer function (Horton et al., 2006). It is noticed

that the regression-based statistical downscaling model

(SDSM) is an appropriate downscaling model which resolve

the coarse spatial resolution to fine GCM resolution (Dibike

and Coulibaly, 2005; Khan et al., 2006; Samadi et al., 2011;

Wilby et al., 2002).  In such statistical downscaling, a

statistical empirical relationship between atmospheric

variables (predictors) such as specific humidity, temperature,

geo-potential height, etc. and individual local scale

meteorological variables (predictands) such as precipitation

and temperature is framed (Wetterhall et al., 2006; Wilby et

al., 2002).  Keeping this in mind, the present study uses the

statistical downscaling technique which is based on multiple

linear regression (MLR). Out of the 26 possible predictors,

seven most appropriate parameters have been identified as

the contributing parameters for the Piperiya watershed in

Chhattisgarh.    For calibration purpose, 30 year rainfall data

(1961-1990) has been used while 1991-2001 data were

considered for validation. Further, prediction of future rainfall

for the study area has been evaluated for the period 2020s,

2050s and 2080s on the basis of HadCM3 A2 and B2

variables. The results are presented on monthly and annual

basis.
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MATERIAL AND METHODS

The statistical downscaling model (SDSM) is a

multiple regression-based tool for generating future scenarios

to assess the impact of climate change. It has the ability to

capture the inter-annual variability better than other

statistical downscaling approaches. This approach involves

three sub-classes such as weather typing, weather generator

and regression/transform function. The model requires two

types of daily data, i.e., (i) the local data known as 'Predictand'

(rainfall) and (ii) the different atmospheric variables known

as 'Predictors'. Formulating an empirical relationship between

predictand and predictor is central to the downscaling

technique. This can be derived by various methods such as

parametric (multiple linear regression) and non-parametric

(artificial neural network; support vector machine). This

study uses the Multiple Linear Regression method which

falls under parametric methods.  The downscaling has been

carried out using SDSM tool version 4.2.9.

Selection of predictors

For downscaling predictand, the selection of suitable

predictors is one of the most important and time consuming

steps during downscaling. The appropriate predictor

variables are selected through scatter plots, positive and

negative correlation and partial correlation analysis between

predictand (rainfall) and predictors (most appropriate out of

26 possible parameters). The observed daily NCEP reanalysis

data set for the periods 1961-2001 was used for the selection

of predictors.

Model calibration and validation

Model calibration is carried out to development of an

empirical relationship between the predictand and the

predictors using multiple linear regression. NCEP reanalysis

data for the period 1961-1990 was used for model calibration,

and rest of the data from 1991 to 2001 is used for validation

purpose. Validation process enables to produce synthetic

daily data based on inputs of the data considered during the

model calibration.  The model performance was evaluated

based on the coefficient of correlation (R) between the

observed values during the validation period and the modeled

values, which can be calculated as

Where,

X
obs

 =observed value;  X
obs 

= mean observed value;

X
mod 

= Modeled value;  X
mod 

= Mean modeled value

Scenario generation

The validated regression model is applied to generate

future scenario for the watershed utilizing the simulated

HadCM3 A2 and B2 GCMs data. The study assumes that the

relationship between predictor and predictand remains valid

under the future climate conditions. Twenty ensembles of

daily synthetic rainfall for a period of 139 years (1961-

2099) have been generated. The ensemble values are

averaged and divided into four separate time period viz. past

(1961-2010), 2020s (2011-2040), 2050s (2041-2070) and

2080s (2071-2099).

Study area

The Piperiya watershed is located in Hasdeo river

catchment of Mahanadi basin in Chhattisgarh state of India.

It lies between Northern latitude of 22°37'46" to 23°35'40"

and Eastern longitude of 82°01'48" to 82°37'29".  Area of

the watershed is about 2414 km2. The watershed covers the

three districts (Koriya, Korba and Bilaspur) of Chhattisgarh

and partially intersects the Annuppur district of Madhya

Pradesh. However the major part of the watershed is covered

under Koriya district of Chhattisgarh. The topography is

hilly in the northern part and it has plains in south. Elevation

of the watershed varies from 324 to 1062m with Northern

part at higher elevation. The Koriya district receives about

1212 mm rainfall in a year.  In summer, temperature reaches

up to 47°C, however the average temperature varies between

17-32°C. The drainage outlet of the watershed is in

Manendragarh block of the Koriya district. About 50 percent

of the watershed area is covered with forest and agricultural

land.

Data used

Meteorological data : The daily rainfall data (1°x1° grid)

was collected from India Meteorological Department (IMD),

Pune for the periods 1961-2001. Statistical downscaling has

been performed using the daily rainfall time series as input

predictand in SDSM software. Further, daily observed and

estimated time series converted into monthly and annual

time series.

Reanalysis data : The daily observed predictor data (re-

analysis data) of atmospheric variables, derived from the

National Center of Environmental Prediction (NCEP) on

2.5° latitude x 2.5° longitude grid-scale for 41 years (1961-

2001) are obtained from the Canadian Climate Impacts

Scenarios (CCIS) website (http://www.cics.uvic.ca/

scenarios/sdsm/select.cgi).
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GCM data : The large-scale daily predictors of Hadley

Center's GCM (HadCM3) for HadCM3 A2 and B2 future

scenarios for 139 years (1961-2099) on 3.75° latitude x 3.75°

longitude grid-scale are also obtained from the Canadian

Climate Impacts Scenarios (CCIS) website (http://

www.cics.uvic.ca/scenarios/sdsm/select.cgi). HadCM3 is

a coupled atmosphere-ocean GCM developed at the Hadley

Centre of the United Kingdom's National Meteorological

Service. HadCM3 has been chosen because of its' wider

acceptance in many climate change impact studies in India.

Further, it provides daily predictor variables, which can be

exclusively used for the SDSM model.

RESULTS AND DISCUSSION

Selection of predictor variables

A list of predictor variables (NCEP and GCM) of a

grid-box closest to the Piperiya watershed in Koriya district

of Chhattisgarh is presented in Table 1. A total of 26 large-

scale predictor variables have been considered in the initial

screening process. These are categorized into five types

based on the atmospheric pressure levels.  The predictors are

selected based on the correlation and the partial correlation

analysis of NCEP predictors and observed weather variables

for the period 1961-2001 in SDSM model. Variables with

best correlation coefficients between predictand and

predictors were chosen for model formulation for scenario

generation.

The selection of predictors have been carried out

using correlation coefficients, partial correlation and p-

values between predictand and NCEP predictors. For

example, in this case, mean sea level pressure, surface zonal

velocity, 500 hPa zonal velocity, 500 hPa vorticity, 500 hPa

geopotential height and surface specific humidity are

identified as the best suited predictors for this case study.

The corresponding correlation coefficients, partial

correlation and p-values between the predictand and NCEP

predictors are shown in Table 2.

The scatter plot between selected predictors and

predictand are shown in Fig. 1. A 5% significance level

(p<0.05) is used to test the significance of predictor-

predictand correlation

Table 1: Name and description of all NCEP and GCM predictors
S. No. Atmospheric pressure level NCEP Variables Descriptions Code Unit
A 1013.25 hPa (1) Mean sea level pressure ncepmslpas Pa
B 1000 hPa (6) Surface airflow strength ncepp__fas m/s-1

Surface zonal velocity ncepp__uas m/s-1

Surface meridional velocity ncepp__vas m/s-1

Surface vorticity ncepp__zas s-1

Surface wind direction ncepp_thas degree
Surface divergence ncepp_zhas s-1

C 850 hPa (8) 850 hPa airflow strength ncepp8_fas m/s-1

850 hPa zonal velocity ncepp8_uas m/s-1

850 hPa meridional velocity ncepp8_vas m/s-1

850 hPa vorticity ncepp8_zas s-1

850 hPa wind direction ncepp8thas degree
850 hPa divergence ncepp8zhas s-1

850 hPa geopotential height ncepp850as m
Relative humidity at 850 hPa ncepr850as %

D 500 hPa (8) 500 hPa airflow strength ncepp5_fas m/s-1

500 hPa zonal velocity ncepp5_uas m/s-1

500 hPa meridional velocity ncepp5_vas m/s-1

500 hPa vorticity ncepp5_zas s-1

500 hPa wind direction ncepp5thas
500 hPa divergence ncepp5zhas s-1

500 hPa geopotential height ncepp500as m
Relative humidity at 500 hPa ncepr500as %

E Near surface (3) Surface specific humidity ncepshumas g kg-1

Mean temperature at 2m nceptempas 0C
Near surface relative humidity nceprhumas %
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Fig. 2: Observed and estimated monthly rainfall during calibration (1961-1990) and validation (1991-2001)

Table 2 : Selected NCEP predictors and their relationship with rainfall

SI No. Selected predictors Correlation coefficients Partial correlation P value

1 ncepmslpas -0.327 -0.070 0.0001

2 ncepp_uas 0.256 0.079 0.0001

3 ncepp5_uas -0.286 -0.023 0.1987

4 ncepp5_zas 0.384 0.187 0.0001

5 ncepr500as 0.316 0.053 0.0020

6 ncepr850as 0.367 0.122 0.0001

7 ncepshumas 0.361 -0.065 0.0001

Fig. 1: Scatter plots between predictand and selected NCEP predictors
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Table 3: Calibration and validation of monthly average rainfall with NCEP reanalysis data

Month Calibration Validation

Observed Estimated Observed Estimated

January 20.0 23.3 25.6 23.9

February 22.9 25.6 9.0 23.5

March 12.5 14.6 17.9 16.6

April 14.0 14.3 11.9 19.1

May 24.2 27.4 12.5 31.9

June 215.1 211.2 198.7 223.5

July 389.0 388.1 394.3 383.6

August 377.3 374.3 360.3 369.9

September 221.0 222.4 217.7 232.1

October 55.8 62.0 45.5 56.2

November 7.5 10.6 19.3 9.5

December 8.6 11.5 13.9 11.1

Minimum 78.5 976.0 939.0 1015.0

Maximum 2471.0 1688.0 1828.0 1781.0

Average 168.0 1385.0 1326.0 1401.0

SD 296.0 147.0 239.0 2250.

R2 0.8436 07376

Table 4: Detailed rainfall statistics for different time steps (scenarios)

Month A2-Scenario                        B2-Scenario

Past 2020s 2050s 2080s Past 2020s 2050s 2080s

January 21.5 30.9 32.3 33.6 21.5 37.5 38.2 43.3

February 19.2 34.4 35.6 34.9 19.2 39.3 43.4 42.7

March 13.9 20.3 22.0 23.7 13.9 19.3 20.7 19.3

April 13.4 24.1 23.3 27.4 13.4 21.5 23.0 22.7

May 21.1 47.7 44.2 51.7 21.1 31.0 34.5 36.6

June 210.7 218.8 232.1 258.2 210.7 224.5 240.2 269.8

July 390.4 339.1 365.4 388.5 390.4 325.4 348.5 378.4

August 372.7 330.8 381.7 465.3 372.7 348.2 400 459.5

September 220.1 262.3 311.4 370.9 220.1 242.7 259.3 310.7

October 53.1 89.9 95.1 91.4 53.1 91.7 96.1 93.1

November 10.6 18.8 19.3 20.0 10.6 21.4 23.3 22.8

December 10.0 23.4 23.9 24.8 10.0 23.6 25.2 26.7

Minimum 785.0 1240.0 1168.0 1536.0 785.0 1226.0 1286.0 1507.0

Maximum 2470.0 1625.0 1769.0 2024.0 2470.0 1618.0 1786.0 2135.0

Average 1357.0 1440.0 1586.0 1790.0 1357.0 1426.0 1552.0 1726.0

SD 114.0 103.0 130.0 127.0 114.0 117.0 135.0 153.0
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It may be noted that since the downscaling is carried

out on daily basis, the correlation coefficients, partial

correlation and p-values are low.  However, the purpose of

the study is to get the rainfall values on monthly basis, and

hence the daily downscaled data is aggregated to present

the monthly rainfall values.

Model calibration and validation results

Since the predictand-predictor relationship is

governed by wet-day occurrences, a threshold value of 3

mm rainfall is considered during model calibration.  Results

of the observed and estimated monthly rainfall during

calibration and validation period are shown in Table 3.

Monthly average and annual statistics of observed and

estimated rainfall are also presented in Table 3.

It can be seen that, the SDSM model shows a good

agreement between the observed and estimated monthly

average and annual (minimum, maximum, average and

standard deviation) statistics of rainfall during calibration

and validation period. Model efficiency have been estimated

with correlation coefficients between observed and

estimated in both the cases. However, the values of

coefficient of determination during calibration and validation

were estimated as 0.8436 and 0.7376 respectively. Observed

and estimated monthly rainfall during calibration (1961-

1990) and validation (1991-2001) shown in Fig. 2.

It may be noticed that during most of the time period,

the predicted and observed values are matching except that

of few outliers.  In other, words, it can be concluded that the

performance of SDSM model using MLR is good on monthly

basis for future estimation of rainfall under HadCM3-A2 and

B2 emission scenarios.

Future scenario generation

Using the MLR based SDSM model, the future rainfall

under HadCM3-A2 and B2 emission scenarios are estimated

with the identified predictors. The estimated rainfall is

represented into four different time steps, i.e., past (1961-

2010), 2020s (2011-2040), 2050s (2041-2070) and 2080s

(2071-2099) and the detailed statistics are represented in

Table 4.

The monthly rainfall predicted for the study area

during the periods 2020s, 2050s and 2080s, indicates an

increasing trend. In A2 scenario, annual rainfall varies from

785 to 2470mm in past, 1240 to 1625mm in 2020s, 1168 to

1769mm in 2050s and 1536 to 2024mm in 2080s. Similarly,

under B2 scenario, the annual rainfall varies from 785 to

2470mm in past, 1226 to 1618mm in 2020s, 1286 to 1786mm

in 2050s and 1507 to 2135mm in 2080s. Under both A2 and

B2 scenarios, there is an increasing trend of rainfall in this

watershed. It also has been observed that the future rainfall

under the A2 scenario is always higher than under the B2

scenario.

CONCLUSIONS

This study highlights the use of MLR based SDSM

technique for assessing the likely future monthly rainfall in

Piperiya watershed of Chhattisgarh state in India.  The tool

is widely used for hydro-meteorological downscaling of

GCMs to local fine-scale resolution.  In the present study,

the daily rainfall time series corresponding to HadCM3 A2

and B2 emission scenario are generated and then used for

estimating the monthly rainfall for different future time

periods.  The model calibration and validation has been

accomplished using NCEP reanalysis data for the periods

1961-90 and 1991-2001, respectively.  It is hoped that this

study will help in the effective management of water

resources in the state in general and Piperiya watershed in

particular.  Also, it will help in study the effect of climate

change on the expected rainfall in this particular area.
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