Short Communication

Thermal use efficiency for determining optimum date of transplanting and water regime in *Boro* rice

PRAMITI K. CHAKRABORTY^{1*}, S. SAMANTA², S. BANERJEE³ and A. MUKHERJEE³

¹Department of Agricultural Meteorology & Physics, BCKV, West Bengal ²Research Scholar, Dept. of Environmental Studies, Visva-Bharati, Santiniketan ³AICRP on Agrometeorology, Directorate of Research, BCKV, West Bengal *E-mail: pramitikumar27@gmail.com

The productivity of rice is largely affected by a set of weather variables among which rainfall, solar radiation and temperature play a significant role. West Bengal farmers generally prefer to grow Boro rice for higher return, which requires huge amount of irrigation water. Deficit irrigation during the vegetative phase affects the growth process and productivity of rice plants (Mishra, 2012). The crop duration under different dates of transplanting are greatly influenced by temperature and may be estimated by accumulated heat units (Gouri et al., 2005). Aggarwal et al. (2016) also evaluated the heat utilization for rice productivity. Under deficit irrigation the total dry matter accumulation during the period of crop growth is affected because of small leaf size and lower number of tillers. The impact of temperature and bright sunshine hour (BSS) on growth and yield of rice crop, transplanted under different dates under deficit irrigation, may differ with the normal practice of cultivation. However, a very few information is available at present. The aim of the research is to identify a suitable window for dates of transplanting along with irrigation regime for optimizing grain yield in *Boro* rice based on heat use efficiency(HUE) and helio-thermal use efficiency (HTUE).

A field experiment was conducted at the university research farm, Kalyani ($22^{\circ}56^{\circ}N$, $88^{\circ}32^{\circ}E$, $9.75^{\circ}MSL$) during the *Boro* season of 2014 and 2015. The soil is *entisol* having 0.07% nitrogen, 24.06 kgha⁻¹ available phosphorous, 187.45 kgha⁻¹ available K, 0.78% organic carbon with pH 6.92. Thirty five (35) days old rice seedlings (cv. *Shatabdi*) were transplanted on 24^{th} January (D_1), 7^{th} February (D_2) and 21^{st} February (D_3) under four ponding regimes. The design was strip-plot where the main plot and sub plot treatments were dates of transplanting and the ponding regimes respectively, with a plot size of $8m \times 3.5m$. The four sub plot treatments are continuous ponding (I_1); intermittent ponding (I_2) during 20 to 65 DAT (irrigation applied 3 days after disappearance of standing water); irrigation depth is 5 cm; intermittent

ponding (I₂) during 20 to 65 DAT (irrigation applied 5 days after disappearance of standing water); irrigation depth is 5 cm and shallow depth deficit irrigation (I₄) during 20 to 65 DAT; irrigation depth is 3cm. I, treatment received 9 to 10 number of irrigations during 20 to 65 DAT. Whereas I₂, I₃ and I₄ received 3 to 4; 2 to 3 and 6 to 9 numbers of irrigation respectively during 20 to 65 DAT for D₁ transplanted crop. I_1 , I_2 , I_3 and I_4 treatments received 8 to 11, 6 to 7, 2 to 3 and 8 to 9 numbers of irrigation respectively for D₂ transplanted crop. Similarly for D₃, I₁I₂, I₃ and I₄ treatments received 8 to 12, 3 to 5, 2 to 4 and 7 to 9 numbers of irrigation respectively. In case of I, and I, irrigation water was applied after 3 and 5 days disappearance of standing water respectively. All standard agronomic procedures were adopted for raising the rice crop. The temperature and bright sunshine hour data were collected from the adjacent meteorological observatory. The GDD, HTU were computed on 30, 45, 60, 75 and 90 days after transplanting (DAT). The cumulative GDD was computed as,

Cumulative GDD (day $^{\circ}$ C) = $\Sigma (T_{mean} - T_b)$

Where T_{mean} is daily mean air temperature in ${}^{\circ}C = (T_{max} + T_{min})/2$; T_{b} is the base temperature considered as $10 {}^{\circ}C$. The helio-thermal unit (HTU) is obtained by multiplying the GDD with bright sunshine hours as follows;

The helio-thermal unit (HTU) = $GDD \times BSS$

The heat use efficiency (HUE) and helio-thermal use efficiency (HTUE) were computed through dividing the above ground biomass or grain yield by cumulative GDD and HTU respectively. HUE and HTUE for above ground biomass on 90 DAT and grain yield have been presented for brevity.

Changes in cumulative GDD and cumulative HTU

The cumulative GDD and HTU gradually increased with the progress of growth irrespective of dates of

Table 1: Changes in cumulative GDD and cumulative HTU for *Boro* rice with the progress of growth under different dates of transplanting.

DAT	-	$D_{_1}$		$\overline{\mathrm{D}_{\mathrm{2}}}$		D_3	_
	1st year	2nd year	1st year	2nd year	1st year	2nd year	
Cumulative G	DD(day°C)						
30	290	352	358	445	439	503	
60	739	860	910	1003	1064	1115	
90	1378	1474	1567	1607	1753	1735	
Maturity	1640	1659	1657	1740	1801	1832	
Cumulative H	ITU(day°C h)						
30	2209	2281	2627	3245	3455	4439	
45	3658	4355	4689	5660	6015	6531	
60	5705	6809	7327	7702	8800	8726	
75	8390	8823	10131	9888	11744	10922	
90	11271	11016	13036	12079	15063	13063	
Maturity	13581	12336	13753	12788	15483	13904	

Table 2: Thermal use efficiency for biomass production of *Boro* rice on 90 DAT under different dates of transplanting and irrigation regime.

DOT				HUE			HTUE			
	regime	(gm ⁻²)		$(gm^{-2} day^{-1} C)$			$(gm^{-2} day^{-1} C h)$			
		1st year	2nd year	Mean	1st year	2nd year	Mean	1st year	2nd year	Mean
$\mathbf{D}_{_{1}}$	I,	1061.7	1002.6	1032.2	0.77	0.68	0.73	0.09	0.09	0.09
	$\mathbf{I}_{\!_{2}}$	934.2	947.1	940.7	0.68	0.64	0.66	0.08	0.09	0.08
	I_3	793.2	800.1	796.7	0.58	0.54	0.56	0.07	0.07	0.07
	$I_{\!\scriptscriptstyle 4}$	855.9	876.9	866.4	0.62	0.59	0.61	0.08	0.08	0.08
$\mathbf{D}_{_{2}}$	$\mathbf{I_{i}}$	900.3	837.6	869.0	0.57	0.52	0.55	0.07	0.07	0.07
	I_2	1140.0	1174.5	1157.3	0.73	0.73	0.73	0.09	0.1	0.09
	I_3	1011.6	1114.8	1063.2	0.65	0.69	0.67	0.08	0.09	0.08
	$\mathbf{I_4}$	963.9	998.1	981.0	0.62	0.62	0.62	0.07	0.08	0.08
\mathbf{D}_3	I_{1}	1137.3	1109.4	1123.4	0.65	0.64	0.64	0.08	0.08	0.08
	I_2	990.9	1060.5	1025.7	0.57	0.61	0.59	0.07	0.08	0.07
	I_3	950.7	989.1	969.9	0.54	0.57	0.56	0.06	0.08	0.07
	$\mathbf{I}_{\!_{4}}$	839.1	897.6	868.4	0.48	0.52	0.5	0.06	0.07	0.06

transplanting and year of experiment (Table 1). The cumulative GDD upto 30 DAT ranged from 299 to 503 day $^{\circ}$ C under different dates and years, highest being under late transplanting (D₃). Similar trends were observed in all the DAT and years. At maturity cumulative GDD ranged from 1640 to 1832 degree days. In case of HTU, upto 60 DAT, the results were similar to that observed with GDD, however, after 75 DAT, the cumulative HTU in second year were less than the first year, mainly due to lower BSS. Singh *et al.*

(2010) and Praveen *et al.* (2013) observed gradual decline in cumulative GDD and cumulative HTUwith delay in transplanting. In the present experiment the trend was reverse because transplanting dates and subsequent growth phases were shifted from low to high temperature regime. Sandhu *et al.* (2013) did not obtain any regular trend in cumulative GDD and cumulative HTU with the gradual delay in transplanting of rice.

Table 3: Thermal use efficiency for grain yield of *Boro* rice under different dates of transplanting and irrigation regimes.

DOT	Irrigation	Yield (tha-1)			HUE			HTUE		
	regime	1st Year	2nd Year	Mean	1st Year	2nd Year	Mean	1st Year	2nd Year	Mean
D ₁	I,	6.63	6.82	6.72	0.40	0.41	0.41	0.05	0.06	0.05
	I_2	6.22	6.70	6.46	0.38	0.40	0.39	0.05	0.05	0.05
	I_3	4.95	5.47	5.21	0.30	0.33	0.32	0.04	0.04	0.04
	$I_{\!\scriptscriptstyle 4}$	5.37	5.75	5.56	0.33	0.35	0.34	0.04	0.05	0.04
\mathbf{D}_{2}	$\mathbf{I}_{\mathbf{i}}$	5.66	5.97	5.81	0.34	0.34	0.34	0.04	0.05	0.04
	I_2	6.46	6.57	6.51	0.39	0.38	0.38	0.05	0.05	0.05
	I_3	5.29	5.43	5.36	0.32	0.31	0.32	0.04	0.04	0.04
	$\mathbf{I}_{\!_{4}}$	5.84	6.13	5.99	0.35	0.35	0.35	0.04	0.05	0.05
$\mathbf{D}_{_{3}}$	$\mathbf{I}_{\mathbf{i}}$	5.20	5.27	5.23	0.29	0.29	0.29	0.03	0.04	0.04
Ü	I_2	5.14	5.02	5.08	0.29	0.27	0.28	0.03	0.04	0.03
	I ₃	4.97	4.57	4.77	0.28	0.25	0.26	0.03	0.03	0.03
	I_4	4.58	4.30	4.44	0.25	0.23	0.24	0.03	0.03	0.03
Irrigation SEm(±)		0.03	0.05							
	CD at 5%	0.13	0.20							
DOT (D) SEm(±)	0.02	0.03							
	CD at 5%	0.10	0.17							
DXI	SEm(±)	0.06	0.05							
	CD at 5%	0.23	0.17							

HUE and HTUE for biomass production

The mean biomass accumulation, HUE and HTUE on 90 DAT were maximum under D_2 and I_2 treatment and minimum when date of transplanting was delayed by 15 days (Table 2). On 90 DAT the HUE for biomass production ranged from 0.57 to 0.64 gm⁻²day⁻¹under different dates of transplanting. Sharp reduction in HUE under D_3 was observed. Singh *et al.* (2010) reported that the TUE for dry matter accumulation reduced gradually with the delay in transplanting. The mean HTUE on 90 DAT ranged from 0.07-0.09gm⁻²day⁻¹°C h under D_1 and D_2 , 0.06-0.08gm⁻² day⁻¹ h under D_3 transplanting (Table 2). The HTUE under different irrigation treatments followed the similar pattern as observed in case of HUE.

HUE and HTUE for grain yield

The grain yield, HUE and HTUE for grain yield are presented in Table 3. The mean grain yield was highest in I_1 treatment under D_1 , in I_2 treatment under D_2 with no significant difference in the second year. In both the years I_2 treatment recorded maximum grain yield. The mean HUE and HTUE followed similar trend to that of grain yield. Singh *et al.* (2010) also observed a gradual decline in HUE for grain

yield with the delay in transplanting of rice.

It can be concluded that the date of transplanting should be confined within 7^{th} February and I_2 irrigation (where irrigation water was applied 3 days after disappearance of water) regime might be adopted based on HUE and HTUE for optimum grain yield.

REFERENCES

Aggarwal, N., Singh, A. and Singh, S.P. (2016). Heat utilization and radiation interception in transplanted rice (*Oryza sativa* L.) in relation to seedling age. *J. Agrometeorol.*, 18(1):93-96.

Gouri, V., Reddy, D.R., Rao, S.B.S.N. and Rao, A.Y. (2005). Thermal requirement of *rabi* groundnut in southern Telengana zone of Andhra Pradesh. *J. Agrometeorol.*, 7: 90-94.

Mishra, A. (2012). Intermittent irrigation enhances morphological and physiological efficiency of rice crop. *Agriculture* (*Ponohoso árstvo*)., 58(4):121-130.

Praveen, K.V., Patel, S.R., Choudhary, J.L. and Bhelawe, S. (2013). Heat unit requirement of Different Rice Varieties Under Chhattisgarh Plain Zones of India. *J Earth Sci*

Clim Change.,5(1): 1-4.

Sandhu, S.S., Kaur, Prabhjot. and Gill, K.K. (2013). Weather Based Agro Indices and Grain Yield of Rice Cultivars Transplanted on Different Dates in Punjab. *Int. J. Agric. and Food. Sci. Tech.*,10(4):1019-1026.

Singh, H., Singh, K.N., Hasan, B. and Khan, A.A. (2010). Agroclimatic models for prediction of growth and yield of rice (*Oryza sativa*) under temperate conditions. *Indian J. Agric.*, Sci., 80(3):254-257.

Received: September 2016; Accepted: March 2017