Impact of meteorological factors on population of major insect pests in tomato, *Lycopersicon esculentum* Mill. under middle Gujarat condition

SUSHMA DEB* and T. M. BHARPODA

Department of Entomology, B. A. College of Agriculture, AAU, Anand, Gujarat- 388 110 *Corresponding author's email: debsushma@gmail.com

ABSTRACT

Investigation on major insect pests in tomato was carried out at Agronomy Farm, B. A. College of Agriculture, Anand Agricultural University, Anand during *rabi* seasons of 2012-13 and 2013-14. Whitefly population was noticed from 39th standard meteorological week (SMW) with maximum population in 45th SMW (2.72 whiteflies/ 3 compound leaves). Aphid population was noticed from 42nd SMW with highest peak in 52nd SMW (0.98). Maximum larval population of leaf miner was observed in 48th SMW with number of larva 0.86 per 3 compound leaves. The activity of *Helicoverpa armigera* commenced from 39th SMW with larval population in the range of 0.12 to 1.86 per 3 twigs. Correlation study was carried out to find out impact of abiotic factors on the activity of insect pests. Wind speed on whitefly, *H. armigera*, leaf miner, spider; maximum temperature on aphid and spider; evening relative humidity on whitefly, aphid, leaf miner and evaporation on aphid were key abiotic factors influencing significantly on the fluctuation of the pests.

Key words: Population dynamics, major insect pests, tomato, abiotic factors.

Tomato (Lycopersicon esculentum Mill.) is one of the most important "protective foods" because of its superior nutritional values. It is one of the most important vegetables grown in the world, which is good source of vitamins. This crop is attacked by number of insects and diseases which became a major constraint in optimum production of tomato (Hoffmann et al., 2007). Some common tomato pests are leaf miners, Liriomyza trifolii (Burgess); aphids, Aphis gossypii Glover; whiteflies, Bemisia tabaci (Gennadius) and tomato fruit borer, Helicoverpa armigera (Hubner) Hardwick. Information on pest complex in particular agro climatic condition is a pre-requisite, which helps in designing a successful pest management strategy. However, no systematic efforts have been made in recent past to observe the diversity of insect pests and their seasonal occurrence with relation to phenological stages of tomato under middle Gujarat condition. Therefore, an investigation was envisaged to study the diversity pests of tomato agro ecosystem.

MATERIALS AND METHODS

Investigation on population of insect pests in tomato was carried out at College Agronomy Farm, B. A. College of Agriculture, Anand Agricultural University, Anand during *Rabi* season, 2012-13 and 2013-14. Tomato variety GT 2 was transplanted during 1st fortnight of September (plot size: 9 × 24 m, spacing: 90 × 60 cm) and raised by adopting standard agronomical practices. The whole experimental plot was divided into five equal sectors and five plants from each sector were selected for recording the observations. The experimental plot was kept free from the spraying of any insecticides. The observations on insect pests were recorded at weekly interval starting from one week after transplanting till the harvest.

Observations on *L. trifolii* were recorded based on mines, larvae and damaged leaves. The number of mines and larval population was recorded from the three compound leaves from the middle portion of the five selected plants while total and damaged leaves were counted from three compound leaves of the same selected plants. Sucking pest's *viz.*, *B. tabaci* and *A. gossypii* were recorded from the three selected compound leaves of the same selected plants.

For recording observations on *H. armigera*, five selected plants were critically observed for recording eggs and larval population. Three twigs were selected from each selected plant for recording the population. The fruit damage was recorded at each picking by counting healthy and damaged fruits from each sector and per cent fruit damage was worked out. The major natural enemies' *viz.*, spiders

*Present address: *Department of Entomology, C.P.C.A, SDAU, Sardarkrushinagar, Gujarat-385 506

				:					'				
Month/	SMWS	No. of	No. of Sucking pests/3	ests/3			Infest:	Infestation of	Pol	Population of	No. (No. of natural enemies/ plant	emies/plant
Week		con	compound leaves	ves			leaf	leafminer	H. arn	H. armigera /3 twigs			
		Whitefly	Leaf	Aphid	No.of	Ż	No./3	Damaged	Egg	Larva(e)	Spiders	Chrysopids	Spiders Chrysopids Coccinellids
				hopper	Mealybug/	con	compound	leaves(%)				(egg)	(adult)
					(Similion)	Mines	Larva(e)						
SeptemberIV	39	0.08	0.00	0.00	0.06	0.16	0.04	1.71	0.14	0.12	0.08	0.00	0.00
OctoberI	40	0.30	0.00	00.00	0.02	0.46	0.12	3.48	0.24	0.26	0.16	0.00	00.00
П	41	0.66	0.04	00.00	0.02	1.08	0.42	5.28	0.30	0.32	0.10	0.00	00.00
Ш	4	1.42	0.04	0.06	0.06	1.44	0.48	7.28	0.42	0.40	0.16	0.00	0.04
IV	43	1.46	0.02	0.08	0.04	2.08	0.32	6.81	0.24	0.32	0.12	0.00	0.06
Λ	4	1.88	0.10	0.10	0.02	2.74	0.78	8.20	0.38	0.40	0.26	0.00	0.04
NovemberI	45	2.72	0.12	0.20	0.14	4.24	0.42	12.97	0.26	0.72	0.26	0.00	0.04
Π	46	1.68	0.12	0.24	0.04	4.06	0.66	12.23	0.72	1.48	0.16	0.00	0.10
Π	47	1.48	0.16	0.30	0.10	4.14	0.64	12.37	0.64	1.58	0.14	0.04	0.12
N	8	2.64	0.24	0.86	0.06	5.52	0.86	18.77	09.0	1.56	0.22	0.08	0.04
DecemberI	49	1.82	0.12	0.96	0.12	5.86	0.56	21.49	0.52	1.32	0.12	0.06	0.06
	50	2.32	0.24	0.82	0.06	6.06	0.50	22.53	0.54	1.86	0.14	0.10	0.04
Ш	51	2.02	0.12	0.80	0.04	6.10	0.48	24.82	0.48	1.86	0.12	0.12	0.02
N	52	1.98	0.06	0.98	0.00	6.32	0.36	26.43	0.32	0.78	0.08	0.02	0.08
January I	1	1.12	0.10	0.68	0.00	7.30	0.40	28.51	0.22	0.56	0.08	0.06	0.04
Π	2	0.74	0.12	09.0	0.00	7.78	0.32	30.00	0.16	0.42	0.06	0.04	0.00
Ш	С	0.72	0.08	0.50	0.00	8.38	0.22	33.20	0.10	0.28	0.04	0.00	0.00
	Mean±SE	1.47	0.10	0.42	0.05	4.34	0.45	16.24	0.37	0.84	0.14	0.03	0.04
		-#1	H	+H	+H	H	÷	Ŧ	H	H	H	-H	H
		0.19	0.02	0.09	0.01	0.64	0.05	2.46	0.05	0.15	0.02	0.01	0.01

252

Weather parameters	Sucking pests			Leaf	H. armigera		
	Whitefly	Leaf hopper	Aphid	miner	Egg	Larva	Spiders
				(larva)			
Evapotranspiration (EP)	-0.073	-0.409	-0.783**	0.055	-0.047	-0.403	0.359
Bright sunshine (BSS)	0.429	0.334	-0.478	0.458	0.472	0.397	0.400
Wind speed (WS)	-0.635**	-0.261	0.272	-0.614*	-0.678**	-0.487	-0.589*
Maximum temperature (T_{max})	0.035	-0.182	-0.699**	0.176	0.220	-0.168	0.624**
Minimum temperature (T _{min})	-0.299	-0.426	-0.693**	-0.140	-0.034	-0.412	0.381
Morning relative humidity (RH_1)	-0.422	-0.019	0.022	-0.370	-0.244	-0.166	-0.248
Evening relative humidity (RH_2)	-0.677**	-0.296	0.533*	-0.574*	-0.458	-0.443	-0.321
Morning vapour pressure (VP ₁)	-0.388	-0.452	-0.686*	-0.233	-0.116	-0.448	0.289
Evening vapour pressure (VP_2)	-0.486	-0.396	-0.489	-0.294	-0.170	-0.437	0.189

Table 2: Correlation coefficient (r) between insect pests of tomato and weather parameters (mean of 2012-13 and 2013-14)

Note: * Correlation is significant at 0.05 level; ** Correlation is significant at 0.01 level

(adults), *Chrysoperla* (eggs) and coccinellids (adults) were also recorded from the selected plants.

In order to study the instantaneous effect of weather parameters on population fluctuation of various pests, the data of environmental factors of *viz.*, evapotranspiration (ET), bright sunshine (BSS), rainfall (RF), wind direction, wind speed (WS), maximum (T_{max}) and minimum (T_{min}) temperature, morning (RH₁) and evening (RH₂) relative humidity as well as morning (VP₁) and evening (VP₂) vapour pressure were correlated. Simple correlation was worked out between various pests and their natural enemies using their weekly mean incidence by adopting a standard statistical procedure (Steel and Torrie, 1980).

RESULTS AND DISCUSSION

Whitefly, (Bemisia tabaci Gennadius)

The data on population of whitefly (Table 1) indicated that the population was commenced from 4th week of September (39th SMW) and continued throughout the crop period. The population showed three peaks, during 1st week of November (45th SMW) (2.72 whiteflies/ 3 compound leaves), 4th week of November (48th SMW) (2.64) and 2nd week of December (50th SMW) (2.32). Correlation study (Table 2) clearly revealed that the whitefly population was negatively correlated with WS (-0.635**) and RH₂ (-0.677**). Chavan *et al.* (2013) reported that whitefly population commenced just after the transplanting in tomato crop with significant negative association with maximum and minimum temperatures, while wind velocity showed significantly positive impact on whitefly population.

Leaf hopper (Amrasca biguttula biguttula Ishida)

Very little occurrence of leaf hopper was observed from 2nd week of October (41st SMW) with number of leafhoppers 0.04 per 3 compound leaves and remained throughout the crop period (Table 1). According to Bhatt (2004), leaf hopper appeared during early vegetative stage in brinjal and was active throughout the crop season.

Aphid (Aphis gossypii Glover)

The data presented in Table 1 indicated that the pest was noticed from 3rd week of October (42nd SMW) with two peaks, 1st week of December (49th SMW) (0.96/3 compound leaves) and 4th week of December (52nd SMW) (0.98). Among the physical factors, RH, $(r = 0.533^*)$ exhibited significant positive, whereas EP (-0.783**), T_{max} (-0.699**), T_{min} (- 0.693^{**}) and VP₁ (-0.686^{*}) exhibited negative association with the activity of this pest (Table 2). Chakraborty (2011) reported that aphid population was initiated at 48th SMW, increased slowly up to 52nd SMW and then remained steadily up to 6th SMW, attained on maximum at 8th SMW and maintained up to 11th SMW in tomato crop. Abiotic conditions *viz.*, T_{max} , T_{min} , temperature gradient, average temperature, minimum relative humidity and BSS had significant negative influence on aphid population, whereas maximum relative humidity and relative humidity gradient had a significant positive influence.

Mealy bug (Phenacoccus solenopsis Tinsley)

There was minimum incidence of mealy bug during the crop period. The population commenced from 4th week of September (39th SMW) and observed the population to the tune of 0.02 to 0.14 per 10 cm twig (Table 1) till 3^{rd} week of December (51st SMW).

Leaf miner (Liriomyza trifolii Burgess)

The data (Table 1) indicates that the infestation commenced from 4th week of September (39th SMW). The number of mines ranges from 0.16 to 8.38 per 3 compound leaves. Larval population of leaf miner exhibited to the tune of 0.04 to 0.86 with two peaks, 5th week of October *i.e.* 44th SMW (0.78) and 4th week of November *i.e.* 48th SMW (0.86) with damaged leaves ranged from 1.71 to 33.20 per cent. Abiotic factors *viz.*, WS (-0.614*) and RH₂ (-0.574*) exhibited highly significant negative association with leaf miner population (Table 2). Chavan *et al.* (2013) reported that peak level of per cent infested leaves (31.75%) due to leaf miner was at 10 WAT *i.e.* 3rd week January and it was partially supported the present findings.

Fruit borer (Helicoverpa armigera (Hubner) Hardwick)

Egg population : The activity of *H. armigera* was noticed from 4th week of September (39th SMW) with the population to the tune of 0.14 to 0.72 egg per 3 twigs (Table 1). The egg population showed its first peak (0.42) during 3rd week of October (42^{nd} SMW) and second or highest peak (0.72) at 2nd week of November (46^{th} SMW). Among various weather parameters under study, WS (-0.678**) showed highly significant negative correlation with egg population (Table 2).

Larval population : Larval population was recorded to the tune of 0.12 to 1.86 per 3 twigs with three peaks, 3^{rd} week of November *i.e.* 47^{th} SMW (1.58) and 2^{nd} (50^{th} SMW) and 3^{rd} (51^{st} SMW) week of December (1.86) (Table 1). Kharpuse and Bajpai (2006) revealed that *H. armigera* appeared on tomato during 3^{rd} week of February and reached to a peak during last week of March. Mandal and Roy (2010) reported that the combination of temperature and humidity adversely affected the survival of *H. armigera* in chickpea in their ambient environment.

Natural Enemies

Spiders: The data (Table 1) revealed that spider population (0.04 to 0.26 spider/ plant) appeared on the crop from 4^{th} week of September (39th SMW) with highest activity (0.26) during 5^{th} week of October (44th SMW) and 1^{st} week

November (45th SMW). Among various physical factors, $T_{min}(0.624^{**})$ showed highly significant positive correlation, whereas WS (-0.589^{*}) was negatively associated with the activity of spiders (Table 2).

Chrysopids: The data (Table 1) revealed that the eggs of *Chrysopids* (0.02 to 0.12 egg/ plant) appeared on the crop during 3^{rd} week of November (47^{th} SMW) showing higher activity during 2^{nd} (50^{th} SMW) and 3^{rd} week of December (51^{st} SMW).

Coccinellids: The population appeared during 3rd week of October (42nd SMW) which ranged from 0.02 to 0.12 with higher activity during 2nd (46th SMW) and 3rd week of November (47th SMW) (Table 1).

REFERENCES

- Bhatt, H.V. (2004). Succession of major insect pests, their population dynamics and management in brinjal (*Solanum melongena* L.). Ph. D. Thesis submitted to BACA,GAU,Anand.
- Chakraborty, K. (2011). Incidence of aphid, *Aphis gossypii* Glover (Hemiptera: Aphididae) on tomato crop in the Agro-climatic conditions of the northern parts of West Bengal, India. *World J. Zool.*, 6 (2):187-191.
- Chavan, S.M., Kumar, S. and Arve, S.S. (2013). Population dynamics and development of suitable pest management module against major insect pests of tomato (*Solanum lycopersicum*). J. Applied Hort. (Lucknow), 15 (2): 150-155.
- Hoffmann, H., Hardie, D. and Burt, J. (2007). Tomato pests in the home garden and their control. *Dept. Agric. Aust. Garden Note*, 34: 82-88.
- Kharpuse, Y.K. and Bajpai, R. (2006). Seasonal incidence of major insect pests of tomato (*Lycopersicon esculentum* M.) at JNKVV research farm Jabalpur. *Indian J. Trop. Biodiv.*, 14 (2): 178-181.
- Mandal S.K. and Roy, S.P. (2010). Succession of insect pests on chick pea, *Cicer arietinum* Linn. in relation to climatic factors in agro-ecosystem of Indo-Gangetic plain of Bhagalpur (Bihar, India). *The Ecoscan*, 4(1): 129-131.
- Steel, R.G.D. and Torrie, J.H. (1980). "Principles and Procedures of Statistics – A Biometrical Approach," pp. 137.