Districtwise wheat and rice yield predictions using meteorological variables in eastern Madhya Pradesh

A. K. GIRI, M. BHAN and K.K. AGRAWAL

College of Agricultural Engineering, JNKVV, Jabalpur 482004 Madhya Pradesh E-mail: bhan.manish@gmail.com

ABSTRACT

District wise rice and wheat yield prediction equations were developed for seven districts of eastern Madhya Pradesh using weakly weather data from 1980-2009. The coefficient of determination (R^2) varied between 0.4 - 0.78 for rice and 0.6 - 0.92 for wheat in different districts. Model performance was evaluated with independent reported data for year 2010 and 2011. As the deviations for both the years were less than ± 15 per cent, the models can be used for predicting the rice and wheat yields in Madhya Pradesh.

Key words : Wheat, rice, forecast grain yield, stepwise regression.

Madhya Pradesh is the leading producer of rice (*Oryza sativa* L) and wheat (*Triticum aestivum* L) however, their varieties are more susceptible to climatic stress (NPCC, 2007). Climate change affect their production due to rainfall variability and temperature stress thereby affecting their yield. In eastern Madhya Pradesh, wheat is a major *rabi* season crop while rice is grown during *kharif* season under rainfed condition. Change in intensity in solar radiation, temperature and distribution of rainfall provoke physiological reactions that affect crop growth and grain yield in rice (Yoshida and Parao, 1979). Therefore, a proper planning is needed to predict yield in advance as it will help in implementing and formulating of policies related to food procurement, distribution and import-export decisions.

In this study, regression equations were developed for predicting district wise wheat and rice yield in different districts of eastern Madhya Pradesh.

MATERIAL AND METHODS

Seven districts (Balaghat, Jabalpur, Mandla, Narsinghpur, Seoni, Shahdol and Sidhi) of Madhya Pradesh (M.P.) were selected for developing district wise yield prediction equations for rice and wheat crops (Table 1). The daily weather data of the past 30 years (1980 – 2009) of maximum and minimum temperatures, morning and afternoon relative humidity and rainfall were collected from Meteorological centre, Bhopal and the Department of physics and agrometeorology, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, M.P. The district wise reported crop yield data were collected from Commissioner, Land Records, Gwalior, M.P. Weather indices were generated

Ta	bl	le 1	l:	Geograp	hical	Locat	ions of	C	listricts
----	----	------	----	---------	-------	-------	---------	---	-----------

Districts	Latitude	Longitude	Altitude	
	(°N)	(°E)	(M)	
Balaghat	21°8	80°18	288	
Jabalpur	22°08	79°53	411	
Mandla	22°59	80°37	445	
Narsinghpur	22°91	79°10	347	
Seoni	22°08	79°53	670	
Shahdol	23°62	81°42	464	
Sidhi	24°4	81°9	286	

*Note: - Five years average from 2003-04 to 2007-08 Source: Commissioner Land Records, Gwalior

using weekly cumulative value for rainfall and weekly average value of the other weather parameters as suggested by Ghosh *et. al.* (2014). After this the weekly data for all the weather variables selected weeks from sowing to post – flowering $(44^{th} - 12^{th}$ standard meteorological week for wheat; $27^{th} - 34^{th}$ week for rice) were used for developing models with crop yield data. The model were developed following methodology described by Ghosh *et. al.*, (2014) as given below;

$$Y = A_0 + \sum_{i=1}^{p} \sum_{j=0}^{1} a_{ij} Z_{ij} + \sum_{i \neq i'=1}^{p} \sum_{j=0}^{1} a_{ii'j} Z_{ii'j} + cT + e$$

where

$$Z_{ij} = \sum_{w=1}^{m} r_{iw}^{j} X_{iw}$$
 and $Z_{ii'j} = \sum_{w=1}^{m} r_{ii'w}^{j} X_{iw} X_{i'w}$

These notations have their usual meaning as given by Ghosh *et. al.*, (2014). Test criteria were used for analyzing

Districts	Normal yield (kg ha ⁻¹)	Regression Equation	\mathbb{R}^2
Rice yield mo	,	est stage (27 – 34 th week)	
Balaghat	1334	Y = 2134 + Z241 * 0.51	0.59
Jabalpur	889	Y = -652. + Z50*-2.65 + Z51*21.11 + Z230*0.007 + T*21.64	0.78
Mandla	799	Y = 4175 + Z141 * 2.54 + Z241 * 1.30	0.42
Narsinghpur	1248	Y = 349 + Z51*10.95+ Z130*0.03 + Z450*-0.01	0.53
Seoni	1237	Y = 867 + Z451 * 0.02 + T * 12.06	0.65
Shahdol	1000	$Y = 3249 + Z20^{*}-42.11 + Z21^{*}-153.46 + Z41^{*}23.65$	0.65
Sidhi	724	Y = 291.15 + Z51 * 0.88 + T * 13.44	0.54
Wheat yield n	nodels at pre-ha	rvest stage (44 – 12 th week)	
Balaghat	914	Y = -911 + Z11*36.18 + Z451*0.09 + T*14.66	0.60
Jabalpur	1499	Y = -3122 + Z11 * 116.09 + T * 59.47	0.92
Mandla	895	Y = 1543 + Z11*62.02 + Z451*7.00 + Z340*0.02 + Z350*-0.02	0.67
Narsinghpur	2513	Y = -3879 + Z231*0.67 + Z241*1.31 + T*69.19	0.78
Seoni	938	Y = 831 + Z241*0.30 + T*18.21	0.63
Shahdol	927	Y = 949 + Z231*0.89 + Z450*-0.008 + T*6.93	0.74
Sidhi	1001	Y = 346.05 + Z40*-2.53 + Z51*15.64 + T*13.91	0.60

Table 2: Yield forecast model for rice and wheat at pre-harvest stage in different districts of eastern Madhya Pradesh.

error deviation between predicted (P) and reported grain yield (O). This was calculated using relative deviation (RD) according to Baier and Robertson, (1967) as:

$$RD = \left[\frac{(Estimated yield (P) - Real yield (O))}{Real yield (O)} \right] X 100$$

If RD is less, then the error will be less with less deviation suggesting a good model, or vice-versa.

RESULTS AND DISCUSSION

The forecast model developed for rice crop at preharvest stage had R² values in a range of 0.4 to 0.78 (Table 2). It was less for Balaghat, Mandla, Narsinghpur and Sidhi districts as compared to Jabalpur, Seoni and Shahdol districts, where crop management practices apart from weather parameters also play a role in rice production. The relative deviation (RD) between predicted and reported yields for years 2010 and 2011 (Table 3) was positive in Mandla district and negative in Balaghat, Jabalpur, Seoni, and Sidhi districts. Overall validation suggest error per cent was less than 15 per cent in both the years. As model is purely weather based, excess rainfall in 2010 followed by low rainfall in 2011 along with more dry weeks situation that could be the reason for yield variation, as similar findings was also observed by Rajegowda *et. al.* (2014).

The forecast model equations developed for wheat crop at pre-harvest stage had R² in a range of 0.6 to 0.92 at different locations (Table 2). Some districts with less R² value suggested other factors like crop management practices, varietal potential, or soil types that may influences crop yield beside weather parameters. The relative deviation between (RD) predicted and reported yields for year 2010 and 2011 (Table 3) was positive in Mandla, Narsinghpur and Shahdol districts in both the years while it was negative in one year and positive in other year in districts Balaghat, Jabalpur, Seoni and Sidhi districts. Overall, the deviations were less than 15 per cent in both the years. These deviation with different trends may be due to the presence of climatic aberrations like heat wave at grain formation stage, unseasonal rains by mid- March or hailstorm that may influence reported yield. Adverse impact of temperature on wheat yield was reported by Lobell et. al. (2012). This condition may be prevalent in eastern M.P due to sowing of late-maturing rice varieties during kharif season, which delay sowing time of wheat and it matures by the end of March thereby coincide with high temperature phase. However, these variations with different trends suggest further refinement in the model equations

CONCLUSION

Rice and wheat yield forecast model equations during

Districts	Gr	ain yield 2010 (kg h	Grain yield 2011 (kg ha ⁻¹)			
	Reported (kg ha ⁻¹)	Forecasted (kg ha ⁻¹)	RD (%)	Reported (kg ha ⁻¹)	Forecasted (kg ha ⁻¹)	RD (%)
			Rice			
Balaghat	1499	1447	-3.58	1426	1313	-8.59
Jabalpur	1202	1093	-9.96	1357	1232	-10.08
Mandla	964	973	0.95	1102	990	11.3
Narsinghpur	1634	1471	-11.06	1403	1296	8.19
Seoni	1392	1211	-14.85	1353	1189	-13.70
Shahdol	1938	1686	-14.90	1346	1399	3.80
Sidhi	922	848	-8.64	1002	872	-14.94
			Wheat			
Balaghat	1301	1146	-13.50	1188	1225	3.01
Jabalpur	2430	2468	1.55	2741	2739	-0.04
Mandla	992	1089	8.90	1012	1176	13.98
Narsinghpur	4144	4034	2.71	4144	3697	12.08
Seoni	957	973	1.69	1149	1117	-2.84
Shahdol	706	824	14.32	914	903	1.197
Sidhi	922	836	10.22	1103	986	-11.81

Table 3: Relative deviation (RD) between reported and forecasted yield of rice and wheat in different districts for 2010 and 2011

pre-harvest stage were generated for a 30 years of datasets, and validated for years 2010 and 2011. Relative deviation was both over- and under-estimated for both the crops with similar and different trends of deviation. The deviation between reported and forecasted grain yield was less than 15 per cent hence, it need further refinement to reduce it to 10 percent. However, these equations may help us to estimate rice and wheat production at pre-harvest stage of the selected districts of eastern Madhya Pradesh.

ACKNOWLEDGEMENT

The authors are grateful to India Meteorological Department, Ministry of Earth Sciences, New Delhi in providing financial assistance under Forecasting Agricultural Output using Space, Agrometeorology and Land based observations (FASAL) project to complete this work successfully.

REFERENCES

Baier, W. and Roberson, G. W. (1967). Estimating yield components of wheat from calculated soil moisture. *Candian J. Plant Sci.*, 47: 617-630.

- Ghosh, K., Balasubramanian, R., Bandopadhyay, S., Chattopadhyay, N.,Singh, K.K. and Rathore, L.S. (2014). Development of crop yield forecast models under FASAL- a case study of *khairf* rice in West Bengal. *J. Agrometeorol.*, 16(1): 1-8.
- Lobell, D.B. Sibley, A. and Ortiz-Monasterio, J.I. (2012). Extreme heat effects on wheat senescence in India. *Nature Climate Change*, 2: 186–189.
- NPCC (2007). Network Project on Climate change. Final Report. Central Research Institute for Dryland Agriculture, Hyderabad.
- Rajegowda, M. B., Soumya, D.G., Padmashri, H.S., Janardhana Gowda, N. A. and Nagesha, L.(2014). Ragi and groundnut yield forecasting in Karnataka - statistical model. *J. Agrometeorol.*, 16(2): 203-206.
- Yoshida, S. and Parao, F.T. (1979). Climate and rice. Intl. Rice Research Institute, Los Banos, Philippines (Cf. *Adv. Agron.* 28:301 – 359).