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Stochastic model for weekly rainfall of Junagadh
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ABSTRACT

A model for the weekly monsoon season rainfall is presented based on the
assumption that weekly rainfall in the season is a first order Markovian process.
Comparison betwesn the historical and synthetic' series shows that the two are
statistically comparable with respect to measures of central tendency, dispersion

and distribution.
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Irmgation scheduling and desizn and
operation of the irmgation systems are directly
dependent on the mpuat of rainfall, The three
main characteristics of rainfall i.e. the amount,
the intensity, and frequency have wide spatial
und temporal variations in arid and semiarid
regions. Therefore, accurate prediction of the
ruinfall over the entire season and at the peak
period, as well as its distribution over the
growing season, are of great importance for
the rational design and management ol
ITgation systems.

Planning and operation of canal
imigation schemes is gencrally based upon
either the weekly, forinightly or monthly values
of rainfall estimated at various recurrence
intervals from historical series. However
probabilistic models of rainfall are useful in
planning irrigation projects rather than in their
operation. Attaining high water use efficiency
and agricultural production remain elusive
goals in the canal command areas. If suitable
models for forecasting rainfall are available,
the efficiency of operation of large irrigation
schemes can substantially be enhanced.

Numerous madels are available 1o
venerate the datly rainfall using Markov chains
(Stern and Coe, 1984), and alternating renewal
process (Buishand, 1977, 1978: Roldan and
Woolhiser, 1982; and Tskaruis ef al., 1984).
Waymire and Gupta (1981) presented a
detailed review of the above models. Both
type of madels need large historical data sets
and require estimation of a large number of
parameters. But the real time application of
the above models is limited because the state
of the system needs to be updated regularly
and the complex two stage maodels miake this
task diffeculr,

A closer look at the literature along these
lines reveals that although many mathematical
madels have been proposed on the structure
of rainfall. there is no unified mathematical
approach to modeling rainfall, In part. this
difficulty stems from the considerahle
space-time variability of rainfall and non-
availability of appropriate mathematical tools
designed to exploit the clustering dependence,
which the rainfall phenomenon seems to
exhibit.

Journal of Agrometeorology/ceety/64



June 2002]

The week is a practical time step for
scheduling irriganion’s on a rotational basis in
large canal schemes and planning inter-
culturimg operations in crops. Hence this paper
anms at developing a simple weekly rainfall
model useful for real time irrigation
scheduling.

MATERIALS AND METHODS

During the maonsoon scason the
probability that 4 wet week 1s followed by a
wel week s much higher than by a dry week.
The weekly rainfall process is therefore
considered to be represented by a first order
Murkovian process. This process has the
property that the state of the svstem in any
week depends on the state of the system in
the previous week only and not on the earlier
history of the system. The probability that a
rundom variable X will change from state 1 to
stite § in successive time intervals is called
the transition probability P . For 4 first order
Markov process with n discrete states,

P=P(W_ _IW_) (1)
=123 0 1= L2580

The P, from a square matrix Pand are
the one step transition probabilities. The
probabilities P are cumulated along each row
i to yield the transition probability matrix P
The derivation of P matrix is carried out in a
number of stages. First of all the number of
states 1 s defined and the range covered by
each state is fixed. Then the weekly rainfall
data series are examined to find the frequency
of transittons from state | o state §. These
counts are then scaled <o that each row adds
up to unity thereby forming a stochastic
matrix. The weekly rainfall series were
eeneried using the P matnx and a random
number generator.
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a) The initial state of the system is
presumed to be known,

bl A random number rt with same
probability density function as the weekly
rainfall series 15 obtained. For the row
corresponding to state i, bilinear interpolation.
the colurnn of the transition prebability matrix,
which corresponds to i01s determined. Thisis
the next state to be visited, state j attime (t+1).
The mid point of this state is assumed to be
the rainfall for the week (t+1),

¢)  State j then becomes state 1 and 115
increased by | for simulating rainfall of the
next week.

dy  We return 1o step (b) and repeat till
the required sequence is produced,

An important requirement for the
simulation model i the distribution of random
numbers used to generate the synthetic data
Nairand Sudarsan (1997 have fitted nommal,
lognormal, log Pearson, gamma and
exponential distributions to weekly rainfall
data. The standard ervor of the distribution 1s
selected ‘as a4 criterion to identify the
hest-suited frequency distribution for the
weekly rainfall data. The standard error of
the distribution is defined as:

n
§ = L [{x-yF(m-m)'] (2
1=I

where x and y are respectively the
recorded. events and the evenl magnitudes
computed from the j® probability distribution
at prababilities computed from the siored
ranks of x  and m 15 the number ol
parameters estimated from the | distribution.
They have suggested expanential distributions
to 38 to 40" standard weeks and gamma
distributions to remaining weeks in the
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Table 1 : Relative standard error for various frequency distributions of weekly rainfall.

Standard Relative standard error Best suited
i Normal Lognormal | Log Pearson | Exponential | Gamma :\héf:l’t;i:;_?"
I 2 3 5 6 7
26 11.2582 853214 542889 TH248 2.3238 b
27 10.6964 S5.8897 6.2874 9.3154 1.0177 ¥
28 10.1123 6.3258 3.3399 31128 1.8524 6
29 11,3258 6.254] 58524 8.1247 2.3648 6
Al 13.5879 73698 5.6178 101123 3.3542 6
3 9.8564 52811 20874 6. 1594 1.8974 §
32 03587 4.9987 3.0204 5.1112 11117 G
33 10,3214 T.6325 58975 4.3571 20214 6
34 12.3698 7.1123 4.3287 8.2697 0.1569 6
i5 11.8748 3.2587 1.9874 7.0123 0.2478 6
36 13,5821 4.1128 15652 33214 [.8074 G
37 110321 5. 1187 20133 9.9085 09635 G
Bt 11.0365 6.9631 8.3128 2.3487 7.8964 a
39 10.2856 7.2483 9.5412 | 2975 55464 3
4i) 13.5847 29856 795984 4.3872 B.2654 3
monscon season (Tuble 1), Table 1 shows the distribution is given by:
standard errors divided by respected standard
deviations for various frequency distributions. FEx) = A expl-Ax) (3)

Therefore, exponential and gamma distributed
random numbers were used to generate the
weekly rainfall,

Exponential distribution

[f the probability that an event will cccur
during a small tme interval 1s very small and
il the occurrence of this event is independent
of the oceurrence of other events, then the
time interval between the occurrence of
events is exponentially distributed, The
probability density function of the exponential

In which & isthe inverse of mean weekly
rainfall,

Cramme distribution
The gamma density function is given by
fix) = A* x ™ exp-Ax) { (n-1)! i4)

Where 4 and n are scale and shape
parameters, Haan (1977) gave the moment
estimaters and maximum likelihood estimators
for & and n, Following the recommendation
of Thom (1938), Greenwood and Durand
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(1960} maximum likelihood estimator's
approach is adopted. Bowman and Sherton
(1970) alleviated the bias resulting from the
Greenwood and Durand (1960) maximum
likelihood sapproach,

Generation of pamma variales

The rainfall data was generated for a
period that equaled five times the length of
record for 26™ to 40" weeks. The rainfall state
af the 25" week (t=1) was pssumed to be the
siume as that of corresponding historical
rainfall series, The data were generated using
gamma distributed random numbers. Several
gamma random variate-generating technigques
are available (Cheng, 1977. Phein and
Ruksashp, 1981; Srikanthan and MacMohan,
19831, From these technigues the Wilson-
Hilferty transformation (Srikanthan and
MuacMohan, 1983) was adopted. According
10 Wilson-Hilferty transformation the approxi-
mately gamma distributed random variable is
expressed as
€ =2 [{1+(g, n /6)-(g7k (36)}*-1]1/ 8,

(5)

g =il-¢tv /(1= ()

2

where, & = gamma random number with
mean zero, variance one and skewness g ;
r = lag one correlation coefficient;
V =skewness coefficient for weekly rainfall,
and n = standardized, normal, random,
variile.

The exponentially distributed random
numbers were generated using Shook and
Highland (1969} approach. To simulate an
exponential distribution call the mean (8) and
use the inverse transformation of the density
function:
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X = -8 Ini(RN) {7}

where, X = generated exponential
number: 8= /& and BN = randomly selected
number in the interval 0w 1,

RESULTS AND DISCUSSION

Average weekly rainfall data of 30 vears
(1958-97) recorded by rain gauge station al
Gujarat Agricultural University, Junagadh. are
utilized as the imput data 1o the model for
validation. The rainfall seres was tested lor
homogeneity using the Kruskal Wallis test and
Mann Whitney test. In each case the sumple
was found 1o be homogeneous. The means,
standard deviations, coefTicient of variation,
coefficient of skewness and kurtosis
coefficient of the weekly rainfall in the
monsoon season are presented in Table 2.
More than 95 % of the annual rammfall in the
study area is confined to monsoon season only.
The onset and cessation weeks of monsoon
are 25" and 40" standard weeks respectively
{Nair and Sudarsan 1997). The model
development is therefore confined to 26" 1o
40 standard weeks of the vears. The weekly
rainfall series have a positive skewness
coefficient (Table 2}, The value A (eq.3) in
exponential distribution for 38 o407 standard
weeks are respectively 0.04, (1083 and (.094,
The unbiased estimates of scale and shape
parameters for various weeks are presented
in Table 2, The goodness of fit of each
probability density function was tested by the
Chi-square 1est. The difference between the
observed and estimated frequencies of runtall
it 5 percent level of significance was not
significant.

Transitional probability matrix

The weekly rainfall values were grouped
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Table 2 : Statistical parameters, scale and shape parameters of weekly rainfall at Junagadh.

Standard Historical series Gamma parameters |2 Static | KS Statig
weeks (5% level) | (3% level)
Mean Cv Cs Ck 8 n
(mm)
26 7068 | 300 | 559 | 3530 | 00118 | 0.8335| 690 | 0.72
27 7750 1.63 1.42 4.98 0.0154 | 1.1936 9.10 0.63
28 R7.70 118 [.12 5.61 00125 | 1.0984 8.70 0.89
29 103.03 1.26 1.26 4.07 00122 | 1.2562 9.30 078
30 69.55 1.13 .54 9.61 00134 | 09310 ] 10.10 (.85
3l 5782 1.47 2.36 10.10 00180 | 1.0463 920 (.45
32 60.22 1.32 247 B.81 0.0141 | 0.8545 8.60 0.58
33 82.73 1.60 541 3309 0.063 | 05223 7.40 042
34 23.16 2.85 2.80 11.62 0.0395 | 09147 | 10.60 (.63
35 51.73 1.49 3.90 19:21 00130 | 0.6760 (.90 0,52
36 3047 2.06 1.95 5.72 00342 | 1.0442 | 11.50 0.66
37 2467 1.32 314 14.74 0.0317 | 0.7824 7.90 .39
38 2563 1.74 3.10 12.86 9.50 0.49
39 12.01 1.95 1.40 3.82 B.10 .62
40 10.60 1.46 320 12.83 6.30 (.85
Table 3 : Definition of rainfall states. %*1 déviffiing the data into 10 equal sections.
: : : Y. e definitions of the various states are given
g;:t“f‘" R“;‘:ﬁ“ﬁ}'““”“’ M'dfil’ﬁr':; in Table 3. The rainfall of 26" to 40 ok
for 40 wyears is represented by the
1 0 () corresponding states depending on the rainfall
2 0-10 5 interval. From this table of rainfall states, the
3 10.1-20 s frequencies of transitions between the states
were computed (Table 4). The probability
4 20.1-30 23 transition matrix (Table 5) was determined
5 30.1-40 35 from this table by dividing each number of
6 40.1-30 45 this table by sum of each row and cumulative
9 50.1-60 55 successive numbers in each row.
8 60.1-70 5 Model validation
) 79.1-00 1 The state of the system needs to be
=i >80 100 updated with current information in real time
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Table 4 : Frequencies of transitions between rainfall states.
Ramfall 1 2 3 4 5 6 — 8 49 10
staies
1 7 19 b 0 T 2 D & 2 0
2 10 37 0 9 8 G 17 10 ] 17
3 8 0 6 ] 5 0 ] b G {1
4 6 12 0 0 4 8 g9 0 3 .
5 5 0 14 3 9 6 7 4 0
§ 3 8 13 8 6 10 0 8 0 8
7 D 11 0 4 3 0 7 ] 5 9
B 8 9 7 13 ! 7 o 12 { i
9 0 W] 9 5 & 6 0 0 | 2
10 0 5 8 14 9 0 5 0 7 0
Table 5 : Transition probability matrix of weekly rainfall at Junagadh.
Rainfall | 1 2 3 4 50 6 7 8 9 | 10
states
1 013 | 049 | 064 | 064 | 077 | 081 | 08l 096 | 10O | 1.00
2 008 | 040 | 040 | 047 | 054 | 062 | 016 | 085 | 085 | 1.00
3 017 | 017 | 029 | 040 | 051 | 051 | 068 | 087 | .00 [ 10O
4 0.12 | 036 | 036 | 036 | 044 | 060 [ 078 | 078 | 0.84 | 1.00
5 008 | 008 | 033 | 038 | 054 | 065 | 080 | 092 | 1.00 | L.OO
6 004 | 017 | 037 | 050 | 059 | 075 | 075 | 0.87 | 0.87 1.00
7 000 | 028 | 028 | 038 | 046 | 046 | 064 | 064 | 076 | 100
8 011 | 023 | 033 | 0351 052 | 062 | 069 | 086 | 086 | 1.00
) 0.00 | 000 | 034 | 053 065 | 088 | 0.88 | 088 | 092 | 1.00
10 000 | 010 | 027 | 056 | 075 ] 075 | 085 | 085 | 1.00 | 1.00

operation of irrigation system, which can be
attained through development of simple and
gasy models. Model validation is presented
here to assess the model performance with
respect to historical rainfall series in
measures of central tendency (mean),

dispersion (coefficient of variation) and
distribution {Skewness). The generated mean
weekly rainfall ranged from 10.6 to 103mm
compared to 8.0 to 94.0 mm for that of
observed series for 26" to 40" weeks, For
individual weeks, the mean weekly rainfall
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Fig 1 : Observed and simulated mean weekly rainfall.
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Fig 2 : Observed and simulated coefficient of variation of weekly rainfall
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Fig 3 : Observed and simulatad cumultive frequency distribuotion of weekly rainfall
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was within the 95 % confidence interval of
the corresponding mean historical rainfall
{Fig.1). A lower amount of rainfall of the
simulated series compared to historical series
wits observed. This is probably due to arbitrary
assignment of mid point of the rainfall state.
Prediction can be improved further by
considering the randomness of amount of
rainfall.

The corresponding values of the
coefficients of variation also were not
significantly different (Fig.2). The cumulative
frequency distributions of the observed and
simulated series of weekly rainfall for the
monseon season as a whole were nearly
identical (Fig 3). The coefficient of skewness
wits greater than 1.0 for all the weeks of the
season [or both synthetic and historical series.
Comparison with observed and generated
frequency distribution for individual weeks
were also carried out using Chi-square and
the Kolmogorov-Smirmoy two sample tests to
prove that the distributions of weekly synthetic
and historic series are not significantly different
for each week (Table 2). The difference
between the weekly synthetic and historical
series of rainfall at 5 percent level of
significance was not significant.

Additional features ¢an be introduced
into the model 1o improve the simulatons by
increasing the states, It s however preferable
to define the states according to equal
probability. In this case the state boundaries
ure- adjusted so that each state contains
approximately the same number of entries,
Deriving the transition matrix in this way
removes 4 source of potential bias in the
generation procedure. Medifications such as
above imply only more computations of
repetitive nature without disturbing the basic
model framework in any way. They can
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therefore be included if deemed necessary at
any location. The weekly rainfall model
presented in this effort is therefore of a
sufficiently general nature to be adopted 10
other locations.
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