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ABSTRACT

Global climate models (GCM) are effective in representing climate processes at the global scale; however, they often exhibit biases and limited
accuracy at the local scale. This limitation is particularly critical in monsoon-dominated regions such as West Java, where statistical downscaling
(SD) provides an appropriate approach. This research aims to predict monthly rainfall in West Java using the Bayesian Tweedie Compound
Poisson Gamma (TCPG) model with combined scenarios of bias correction and dummy variables. Bias correction used empirical quantile
mapping (EQM) with CHIRPS data. Monthly rainfall as the response variable was modelled using a Bayesian TCPG regression, with parameter
estimation performed through Bayesian Markov chain Monte Carlo (MCMC) using the Metropolis Hastings algorithm. The best model scenario
was achieved using dummy variables without bias correction, with CNRM-ESM2-1 identified as the most effective Decadal Climate Prediction
Project (DCPP) model. These findings enhance rainfall prediction accuracy in tropical monsoon regions and support agricultural and water
resource planning in West Java.
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Rainfall prediction is highly uncertain due to complex
topography and ocean—land—atmosphere interactions, requiring
accurate local-scale forecasting supported by global circulation
information from global climate model (GCM) outputs. Statistical
downscaling (SD) enables local rainfall prediction from GCM
data, but the outputs are high-dimensional and suffer from
multicollinearity. To address this, previous studies applied methods
such as Least Absolute Shrinkage and Selection Operator (LASSO),
principal component analysis (Soleh e al., 2015; Yunus et al.,
2020), principal component regression, and latent root regression
(Sahriman and Yulianti, 2023).

Accurate rainfall prediction requires models that can
simultaneously capture all rainfall components. Rainfall data, often
zero-inflated and right-skewed, are well-described by the Tweedie
Compound Poisson Gamma (TCPG) distribution. TCPG-based
modeling has been applied using various methods: maximum
likelihood (Dunn, 2004; Hasan and Dunn, 2010; Yunus et al., 2017,
Dzupire et al., 2018), blockwise majorization iteratively reweighted

least square (Qian et al., 2016; Dewanti et al., 2024), quasi and
pseudolikelihood (Bonat and Kokonendji, 2017), and iteratively
reweighted least squares (Hayati et al, 2021). TCPG models
improve prediction accuracy for rainfall intensity, mean occurrence,
and probability of no rainfall (Yunus et al., 2017). Given the spatial-
temporal complexity and high-dimensional predictors in statistical
downscaling, a Bayesian approach is preferred for its flexibility and
ability to incorporate prior information.

Previous studies have addressed bias correction (Shweta
et al., 2020; Dewanti et al., 2024) and the use of dummy variables
(Annisa et al., 2023) separately. Previous studies have not integrated
bias correction and dummy variables within the Bayesian TCPG
framework, especially for tropical monsoon regions such as West
Java. To fill this gap, the present study combines bias correction
with dummy variables to improve local rainfall prediction. In
general, West Java has four tropical seasons: the rainy season, the
transition from rainy to dry season, the dry season, and the transition
from dry to wet season. Therefore, to improve prediction accuracy,
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Table 1: Description of rainfall stations used in the study

December 2025

Station Coordinates Altitude Monthly rainfall (mm/ Type of terrain
(mas.l) month)
Cibukamanah -6.57° S, 107.53° E 122 221.9 Lowland
Krangkeng -6.50° S, 108.48° E 19 110.3 Lowland
Kawali -7.19° S, 108.37° E 380 253.5 Midland
Katulampa -6.60° S,106.80° E 262 339.6 Midland
Cibeureum -7.04° S, 107.50° E 797 175.6 Highland
Perk. Gunung Mas -6.71° S, 106.97° E 1130 303.0 Highland

in this study, the rainfall was divided into four groups, with three
dummy variables added as explanatory variables. The novelty lies
in combining TCPG with Empirical Quantile Mapping (EQM) bias
correction and dummy variables to capture monsoon seasonality,
thereby improving local scale rainfall prediction in West Java. In
addition, improving the accuracy of rainfall prediction is closely
related to the sustainable development goals (SDGs), particularly
SDGs 13 on climate action.

MATERIALS AND METHODS
Study location

West Java Province of Indonesia has a varied topography
and geologically rich. This region has combination of mountains,
hills, highlands, midlands, lowlands, and coastlines. This study used
six rainfall stations in West Java: Krangkeng and Cibukamanah
(lowlands), Kawali and Katulampa (midlands), and Cibeureum and
Gunung Mas (highlands). The detailed characteristics of the six
stations are shown in Table 1.

Data

This research uses three types of secondary data from
January 1991 to December 2020. The first is GCM couple model
intercomparison project phase 6 (CMIP6) monthly rainfall data,
a predictor variable in a 5x8 grid. The type of GCM used is
decadal climate prediction project (DCPP) model, obtained from
the page https://esgf-node.ipsl.upme.fr/search/cmip6-ipsl/. The
DCPP models used CNRM-ESM2, MIROC6, MRI-ESM2-0, and
MPI-ESM1-2-HR (Dewanti et al., 2024; Sativa et al., 2025). The
second is climate hazards group infrared precipitation with stations
(CHIRPS) monthly rainfall data obtained from the page https://
iridl.Ideo.columbia.edu/SOURCES/.UCSB/.CHIRPS/. = CHIRPS
locations correspond to six rain stations with a grid size of 20 x
20 and a resolution of 0.05°x 0.05° each. This data will be used
to correct bias in the GCM output data. The third is monthly
rainfall intensity data (mm/month) from the Indonesia Agency for
Meteorology Climatology and Geophysics (BMKG).

Empirical quantile mapping

Empirical Quantile Mapping (EQM) is a bias correction
technique that aligns the quantile distribution of model outputs
with observations by mapping model values to the corresponding
observational quantiles. In addition, EQM does not assume any
specific distribution for precipitation and method capable of

effectively reducing biases in mean, variance, quantiles, and wet
day frequency. Bias correction via EQM involves (1) Calculating
empirical percentiles for both predicted and observed data; (2) Obtain
the cumulative distribution function for each predicted and observed
data from empirical percentiles. The values that fall between the
given percentiles are computed through linear interpolation; (3)
Perform bias correction with the following equation (Gudmundsson
etal, 2012):

Pepa = Fo_l(Fd(Pd)) (1)

where Fu is prediction data, is CDF of P4, F5', CDF inverse of Po,
Po, is observation data and Pcpd is corrected prediction data. Bias
correction aims to establish the relationship between predicted data
and actual data using a transfer function F5' (Fd (.)).

Bayesian TCPG regression model

The TCPG distribution belongs to the exponential
family and is characterized by two parameters: the mean p dan
dispersion parameter ¢ > 0 denoted as Twy(u,$), where the power
index parameter p lies in the range /<p<2. According to Bonat and
Kokonendji (2017), the link function for the response variable with
TCPG distribution is the logarithmic link function, namely Suppose
{(ixi ),i=1,...,n} 1is a pair of response variables and explanatory
variables where stochastically free identical to the sample size n and
Yi~T(Wp ) (ui,¢). The TCPG based generalized linear model (GLM)
with dummy variables can be expressed as:

K
log(u) = Bo + Z BjXji + v1Dyi + v2Dai +y3Ds;

@)

where Xji represents the j-th principal component obtained from
the PCA of DCPP predictors for the i-th observation, and f are
the regression coefficients for the GCM predictors, and y are the
regression coefficients corresponding to the three seasonal dummy
variables compared to the wet season. Specifically, D:i denotes the
dummy for the transition from dry to wet season, D> for the wet
season, and Dsi for the transition from wet to dry season. (Yi )=ui
and Var (") = ¢#{. Parameter estimation for this model was conducted
using the Markov Chain Monte Carlo (MCMC) with the Metropolis
Hastings algorithm. The prior structure was adopted by Zhang
(2013), specified as: N B~N0.5iD= 410, 100), and p~U (1,2).

Analysis procedure

The data analysis procedures carried out in this research
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Fig. 1: Boxplot of rainfall at six rainfall stations in West Java Province in 1991-2020; (a) lowlands, (b) midlands, and (c) highlands
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Fig. 2: Histogram and density plot of rainfall at six rainfall stations in West Java Province in 1991-2020; (a) lowlands, (b) midlands, and (c)

highlands

are as follows: (1) Conducting data exploration to determine
the characteristics of rainfall data; (2) Splitting the data into
training sets (1991-2017) and testing sets (2018-2020); (3)
Performing DCPP data bias correction on CHIRPS data used
EQM; (4) Checking the distribution of rainfall data; (5) Reducing

multicollinearity used principal component analysis (PCA); (6)
Doing SD rainfall modelling with Bayesian TCPG regression
used four scenarios (without bias correction used with and without
dummy; and with bias correction used with and without dummy)
for each DCPP and stations; (7) Evaluating the model by calculating
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December 2025

Table 2: RMSEP and correlation value of each station based on model scenario

RMSEP Correlation
Station Without bias correction Bias correction Without bias correction Bias correction
Without With Without With Without With Without With
dummy dummy dummy dummy dummy dummy dummy dummy
Cibukamanah 126.29 109.37 134.30 120.69 0.61 0.77 0.61 0.71
Krangkeng 72.36 73.63 71.00 73.74 0.57 0.61 0.59 0.61
Katulampa 140.90 131.61 139.22 131.93 0.55 0.64 0.57 0.63
Kawali 180.28 162.67 181.54 170.4 0.69 0.76 0.67 0.72
Cibeureum 88.28 81.96 89.19 87.01 0.58 0.67 0.57 0.64
Perk. Gunung Mas 142.16 123.66 140.51 123.28 0.70 0.80 0.69 0.80
Average 125.05 113.82 125.96 117.84 0.62 0.71 0.62 0.69
Standard deviation 39.30 33.01 39.80 34.33 0.06 0.08 0.05 0.07
Table 3: RMSEP and correlation value of each DCPP based on model scenario
DCPP RMSEP Correlation

Without bias correction

Bias correction

Without bias correction Bias correction

Without With Without With Without With Without With

dummy dummy dummy dummy dummy dummy dummy dummy
CNRM-ESM2-1 112.27 109.39 111.91 108.57 0.72 0.74 0.73 0.74
MIROC6 140.70 118.60 141.50 119.50 0.48 0.66 0.47 0.66
MRI-ESM2-0 118.76 112.83 131.05 132.10 0.69 0.72 0.60 0.62
MPI-ESM1-2-HR 128.46 114.44 119.39 111.19 0.60 0.70 0.66 0.72
Average 125.05 113.82 125.96 117.84 0.62 0.71 0.62 0.69
Standard deviation 12.38 3.82 13.01 10.58 0.11 0.03 0.11 0.06

RMSEP = [Z31, (i — 9)?

and correlation coefficient (r) between actual data and predicted
data with formula and;

S xi=0i-y)
5P G2 (=%

(8) Comparing models for four scenarios used root mean square
error of prediction (RMSEP) and correlation coefficient.

r =

RESULTS AND DISCUSSION
Exploration of rainfall data

Rainfall at six stations distributed across West Java
Province exhibited a monsoonal pattern. Rainfall is lowest from
July to September (<100 mm/month), representing the dry season.
Rainfall rose from October to March, peaking in the wet season
(>200 mm/month), then declined from April to June as the transition
to the dry season. The wet—dry month classification followed
Tasiyah et al., (2024) and was used to construct dummy categories.
The average rainfall pattern of six stations is shown in Fig. 1.

Rainfall at Cibukamanah and Krangkeng tends to be low,
below 200 mm/month with rare extreme events, while Kawali,
Cibeureum, and Gunung Mas have long tails of distribution,

indicating a higher frequency of extreme rainfall and greater
variation. Katulampa Station showed more dispersed distribution
with several small peaks, reflecting a varied rainfall pattern. In
general, all locations showed a positive asymmetric distribution
with most rainfall in the range of 0-300 mm/month and a right-
tailed tail, supporting the use of the TCPG distribution. The
rainfall distribution is illustrated in Fig. 2.

Comparison of model performance for each station and DCPP

The Bayesian TCPG regression model showed different
predictive performance across stations. Table 2 presents the RMSEP
values and correlation coefficients for each station under different
model scenarios, namely with and without bias correction as well
as with and without dummy variables. On average, the inclusion
of dummy variables reduced RMSEP and increased correlation
compared to scenarios without dummy variables.

Dummy variables notably improved model accuracy,
while bias correction had only minor effects. The highest correlation
(0.8) occurred at Perkebunan Gunung Mas with dummy variables,
the lowest RMSEP (71) at Krangkeng with bias correction without
dummy, and higher RMSEP (>130) at Kawali and Katulampa
despite moderate correlations (0.63-0.76), reflecting complex
rainfall patterns.

The CNRM-ESM2-1 model showed the most consistent
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Fig. 4: Comparison plot of actual data with predicted data from the best scenario

Table 4: RMSEP and correlation value of terrain types

491

RMSEP Correlation
Terrai Without bias correction Bias correction Without bias correction Bias correction
errain
Without With dummy Without With dummy Without With dummy Without With
dummy dummy dummy dummy dummy
Lowland 99.33 91.50 102.65 97.22 0.59 0.69 0.60 0.66
Midland 160.59 147.14 160.38 151.17 0.56 0.70 0.62 0.68
Highland 115.22 102.81 128.71 105.15 0.64 0.74 0.63 0.72
performance with lower prediction errors and higher correlations, variation (dummy variables).

whereas MIROC6 demonstrated the weakest performance after
bias correction. The use of dummy variables tends to help maintain
correlation stability compared to models without dummy variables.

The addition of dummy variables improved model
accuracy, both with and without bias correction. Because GCM

Overall, the evaluation results based on Table 3 indicated that bias predictors are continuous and often overlap between seasons, they
correction did not necessarily improve model performance. This cannot explicitly capture categorical seasonal effects. Dummy

occurred because the model was strongly affected by seasonal variables allowed the model to represent seasonal heterogeneity
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more precisely, providing advantages in identifying distinct seasonal
influences.

The application of bias correction actually tended to
degrade model performance, given the data and methods used. The
Bayesian approach naturally corrected for bias through resampling
to obtain the posterior distribution. The estimation process
already incorporated natural bias correction through the posterior
distribution, making frequentist bias correction irrelevant.

Comparison of Model Performance between Terrain Types

The predictive performance of the Bayesian TCPG
regression model varied across terrains. The best model performance
was observed in the lowland and highland areas when dummy
variables were included without bias correction, with RMSEP
values of 91.5 and 102.81, respectively. This is presented in Table 4.

According to Table 4, the model was capable of predicting
rainfall in lowland and highland areas with relatively small errors.
In contrast, the midland area showed the lowest performance, with
the highest RMSEP value of 160.59. This was consistent with the
research by Dewanti et al., (2024), which explained that in the
Stacking-RF ensemble model, bias correction did not improve
model performance either overall or by terrain types. The limitation
of Dewanti et al., (2024) was that they did not include dummy
variables as predictors.

The inclusion of dummy variables as a novelty in this
study improved the model’s performance in predicting rainfall
across different elevations. This finding was consistent with the
study by Annisa et al., (2023), which reported that the inclusion of
dummy variables in the model improved the estimation of rainfall
data. Fig. 3 indicates that dummy variables reduced RMSEP and
increased correlation, especially in lowland and highland areas.

Best model performance

Overall, that the model performed best in each station
and terrain used CNRM-ESM2-1 with dummy and without bias
correction. The model showed varying performance across stations,
with the best results at Cibukamanah (R? = 0.70, RMSEP = 96.15)
and Gunung Mas (R? = 0.64, RMSEP = 124.67), while the lowest
accuracy was observed at Krangkeng (R? = 0.38, RMSEP = 72.59).
Overall, the model adequately captured rainfall variability, although
prediction accuracy differed among stations. This is illustrated in
Fig. 4.

Based on the best model performance was obtained the
index parameter p at all stations consistently ranged between 1 <p <
2 (Katulampa: 1.317; Krangkeng: 1.357; Perkebunan Gunung Mas:
1.403; Cibukamanah: 1.384; Cibeureum: 1.438; Kawali: 1.471).
This confirmed that rainfall data followed a compound Poisson
process with a Gamma component, consistent with the TCPG
distribution and supporting previous findings (Dunn, 2004; Dzupire
et al., 2018; Hayati et al., 2021).

CONCLUSION

December 2025

Bayesian TCPG regression with principal component
analysis effectively handles rainfall data and multicollinearity, with
the best results achieved using the DCPP CNRM-ESM2-1 model
with dummy variables and without bias correction. This indicated
that the model has a high capability in capturing local and seasonal
climate dynamics in West Java, Indonesia. This highlights the
importance of grouping through dummy variables in enhancing
model performance. This model performance was reflected at
almost all stations. In addition, the model performed best in lowland
and highland areas. From a practical perspective, this approach
can support agricultural management, water resource planning,
and disaster mitigation. For future research, the application of
hierarchical Bayesian structures is recommended to better capture
spatial variability and enhance model robustness.
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