
Rainfall prediction is highly uncertain due to complex 
topography and ocean–land–atmosphere interactions, requiring 
accurate local-scale forecasting supported by global circulation 
information from global climate model (GCM) outputs. Statistical 
downscaling (SD) enables local rainfall prediction from GCM 
data, but the outputs are high-dimensional and suffer from 
multicollinearity. To address this, previous studies applied methods 
such as Least Absolute Shrinkage and Selection Operator (LASSO), 
principal component analysis (Soleh et al., 2015; Yunus et al., 
2020), principal component regression, and latent root regression 
(Sahriman and Yulianti, 2023). 

Accurate rainfall prediction requires models that can 
simultaneously capture all rainfall components. Rainfall data, often 
zero-inflated and right-skewed, are well-described by the Tweedie 
Compound Poisson Gamma (TCPG) distribution. TCPG-based 
modeling has been applied using various methods: maximum 
likelihood (Dunn, 2004; Hasan and Dunn, 2010; Yunus et al., 2017; 
Dzupire et al., 2018), blockwise majorization iteratively reweighted 

least square (Qian et al., 2016; Dewanti et al., 2024), quasi and 
pseudolikelihood (Bonat and Kokonendji, 2017), and iteratively 
reweighted least squares (Hayati et al., 2021). TCPG models 
improve prediction accuracy for rainfall intensity, mean occurrence, 
and probability of no rainfall (Yunus et al., 2017). Given the spatial-
temporal complexity and high-dimensional predictors in statistical 
downscaling, a Bayesian approach is preferred for its flexibility and 
ability to incorporate prior information.

Previous studies have addressed bias correction (Shweta 
et al., 2020; Dewanti et al., 2024) and the use of dummy variables 
(Annisa et al., 2023) separately. Previous studies have not integrated 
bias correction and dummy variables within the Bayesian TCPG 
framework, especially for tropical monsoon regions such as West 
Java. To fill this gap, the present study combines bias correction 
with dummy variables to improve local rainfall prediction. In 
general, West Java has four tropical seasons: the rainy season, the 
transition from rainy to dry season, the dry season, and the transition 
from dry to wet season. Therefore, to improve prediction accuracy, 
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Global climate models (GCM) are effective in representing climate processes at the global scale; however, they often exhibit biases and limited 
accuracy at the local scale. This limitation is particularly critical in monsoon-dominated regions such as West Java, where statistical downscaling 
(SD) provides an appropriate approach. This research aims to predict monthly rainfall in West Java using the Bayesian Tweedie Compound 
Poisson Gamma (TCPG) model with combined scenarios of bias correction and dummy variables. Bias correction used empirical quantile 
mapping (EQM) with CHIRPS data. Monthly rainfall as the response variable was modelled using a Bayesian TCPG regression, with parameter 
estimation performed through Bayesian Markov chain Monte Carlo (MCMC) using the Metropolis Hastings algorithm. The best model scenario 
was achieved using dummy variables without bias correction, with CNRM-ESM2-1 identified as the most effective Decadal Climate Prediction 
Project (DCPP) model. These findings enhance rainfall prediction accuracy in tropical monsoon regions and support agricultural and water 
resource planning in West Java.
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in this study, the rainfall was divided into four groups, with three 
dummy variables added as explanatory variables. The novelty lies 
in combining TCPG with Empirical Quantile Mapping (EQM) bias 
correction and dummy variables to capture monsoon seasonality, 
thereby improving local scale rainfall prediction in West Java. In 
addition, improving the accuracy of rainfall prediction is closely 
related to the sustainable development goals (SDGs), particularly 
SDGs 13 on climate action.

MATERIALS AND METHODS

Study location

West Java Province of Indonesia has a varied topography 
and geologically rich. This region has combination of mountains, 
hills, highlands, midlands, lowlands, and coastlines. This study used 
six rainfall stations in West Java: Krangkeng and Cibukamanah 
(lowlands), Kawali and Katulampa (midlands), and Cibeureum and 
Gunung Mas (highlands).  The detailed characteristics of the six 
stations are shown in Table 1.

Data

This research uses three types of secondary data from 
January 1991 to December 2020. The first is GCM couple model 
intercomparison project phase 6 (CMIP6) monthly rainfall data, 
a predictor variable in a 5×8 grid. The type of GCM used is 
decadal climate prediction project (DCPP) model, obtained from 
the page https://esgf-node.ipsl.upmc.fr/search/cmip6-ipsl/. The 
DCPP models used CNRM-ESM2, MIROC6, MRI-ESM2-0, and 
MPI-ESM1-2-HR (Dewanti et al., 2024; Sativa et al., 2025). The 
second is climate hazards group infrared precipitation with stations 
(CHIRPS) monthly rainfall data obtained from the page https://
iridl.ldeo.columbia.edu/SOURCES/.UCSB/.CHIRPS/. CHIRPS 
locations correspond to six rain stations with a grid size of 20 x 
20 and a resolution of 0.05°x 0.05° each. This data will be used 
to correct bias in the GCM output data. The third is monthly 
rainfall intensity data (mm/month) from the Indonesia Agency for 
Meteorology Climatology and Geophysics (BMKG). 

Empirical quantile mapping 

Empirical Quantile Mapping (EQM) is a bias correction 
technique that aligns the quantile distribution of model outputs 
with observations by mapping model values to the corresponding 
observational quantiles. In addition, EQM does not assume any 
specific distribution for precipitation and method capable of 

effectively reducing biases in mean, variance, quantiles, and wet 
day frequency. Bias correction via EQM involves (1) Calculating 
empirical percentiles for both predicted and observed data; (2) Obtain 
the cumulative distribution function for each predicted and observed 
data from empirical percentiles. The values that fall between the 
given percentiles are computed through linear interpolation; (3) 
Perform bias correction with the following equation (Gudmundsson 
et al., 2012):

	  	 (1)

where Fd is prediction data,  is CDF of Pd, Fo-1 ,  CDF inverse of Po, 
Po, is observation data and Pcpd is corrected prediction data. Bias 
correction aims to establish the relationship between predicted data 
and actual data using a transfer function Fo-1 (Fd (.)).

Bayesian TCPG regression model

The TCPG distribution belongs to the exponential 
family and is characterized by two parameters: the mean 𝜇 dan 
dispersion parameter 𝜙 > 0 denoted as Twp(μ,ϕ), where the power 
index parameter 𝑝 lies in the range 1<p<2. According to Bonat and 
Kokonendji (2017), the link function for the response variable with 
TCPG distribution is the logarithmic link function, namely Suppose 
{(yi,xi ),i=1,…,n}  is a pair of response variables and explanatory 
variables where stochastically free identical to the sample size 𝑛 and 
Yi~T(Wp ) (μi,ϕ). The TCPG based generalized linear model (GLM) 
with dummy variables can be expressed as:

	 	 (2)

where Xji represents the j-th principal component obtained from 
the PCA of DCPP predictors for the i-th observation, and β  are 
the regression coefficients for the GCM predictors, and γ are the 
regression coefficients corresponding to the three seasonal dummy 
variables compared to the wet season. Specifically, D1i denotes the 
dummy for the transition from dry to wet season, D2i for the wet 
season, and D3i for the transition from wet to dry season. (Yi )=μi 
and Var  Parameter estimation for this model was conducted 
using the Markov Chain Monte Carlo (MCMC) with the Metropolis 
Hastings algorithm. The prior structure was adopted by Zhang 
(2013), specified as: N = ϕ~U(0, 100), and p~U (1,2). 

Analysis procedure

	 The data analysis procedures carried out in this research 

Table 1: Description of rainfall stations used in the study

Station Coordinates Altitude
(m a.s.l)

Monthly rainfall (mm/
month)

Type of terrain

Cibukamanah -6.57° S, 107.53° E 122 221.9 Lowland
Krangkeng -6.50° S, 108.48° E 19 110.3 Lowland
Kawali -7.19° S, 108.37° E 380 253.5 Midland
Katulampa -6.60° S,106.80° E 262 339.6 Midland
Cibeureum -7.04° S, 107.50° E 797 175.6 Highland
Perk. Gunung Mas -6.71° S, 106.97° E 1130 303.0 Highland

Bayesian Tweedie Compound Poisson Gamma (TCPG) statistical downscaling of rainfall 
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Fig. 1: Boxplot of rainfall at six rainfall stations in West Java Province in 1991-2020; (a) lowlands, (b) midlands, and (c) highlands

Fig. 2: 	 Histogram and density plot of rainfall at six rainfall stations in West Java Province in 1991-2020; (a) lowlands, (b) midlands, and (c) 
highlands

are as follows: (1) Conducting data exploration to determine 
the characteristics of rainfall data; (2) Splitting the data into 
training sets (1991–2017) and testing sets (2018-2020); (3) 
Performing DCPP data bias correction on CHIRPS data used 
EQM; (4) Checking the distribution of rainfall data; (5) Reducing 

multicollinearity used principal component analysis (PCA); (6) 
Doing SD rainfall modelling with Bayesian TCPG regression 
used four scenarios (without bias correction used with and without 
dummy;  and with bias correction used with and without dummy) 
for each DCPP and stations; (7) Evaluating the model by calculating  

ROHIMAH et al.
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RMSEP = 

and correlation coefficient (r) between actual data and predicted 
data with formula  and;

 	

(8) Comparing models for four scenarios used root mean square 
error of prediction (RMSEP) and correlation coefficient. 

RESULTS AND DISCUSSION

Exploration of rainfall data 

Rainfall at six stations distributed across West Java 
Province exhibited a monsoonal pattern. Rainfall is lowest from 
July to September (<100 mm/month), representing the dry season. 
Rainfall rose from October to March, peaking in the wet season 
(>200 mm/month), then declined from April to June as the transition 
to the dry season. The wet–dry month classification followed 
Tasiyah et al., (2024) and was used to construct dummy categories. 
The average rainfall pattern of six stations is shown in Fig. 1. 

Rainfall at Cibukamanah and Krangkeng tends to be low, 
below 200 mm/month with rare extreme events, while Kawali, 
Cibeureum, and Gunung Mas have long tails of distribution, 

indicating a higher frequency of extreme rainfall and greater 
variation. Katulampa Station showed more dispersed distribution 
with several small peaks, reflecting a varied rainfall pattern. In 
general, all locations showed a positive asymmetric distribution 
with most rainfall in the range of 0-300 mm/month and a right-
tailed tail, supporting the use of the TCPG distribution. The 
rainfall distribution is illustrated in Fig. 2.                 

Comparison of model performance for each station and DCPP

The Bayesian TCPG regression model showed different 
predictive performance across stations. Table 2 presents the RMSEP 
values and correlation coefficients for each station under different 
model scenarios, namely with and without bias correction as well 
as with and without dummy variables. On average, the inclusion 
of dummy variables reduced RMSEP and increased correlation 
compared to scenarios without dummy variables.

Dummy variables notably improved model accuracy, 
while bias correction had only minor effects. The highest correlation 
(0.8) occurred at Perkebunan Gunung Mas with dummy variables, 
the lowest RMSEP (71) at Krangkeng with bias correction without 
dummy, and higher RMSEP (>130) at Kawali and Katulampa 
despite moderate correlations (0.63–0.76), reflecting complex 
rainfall patterns.

The CNRM-ESM2-1 model showed the most consistent 

Table 2: RMSEP and correlation value of each station based on model scenario

Station

RMSEP Correlation

Without bias correction Bias correction Without bias correction Bias correction

Without 
dummy

With 
dummy

Without 
dummy

With 
dummy

Without 
dummy

With 
dummy

Without 
dummy

With 
dummy

Cibukamanah 126.29 109.37 134.30 120.69 0.61 0.77 0.61 0.71
Krangkeng               72.36 73.63 71.00 73.74 0.57 0.61 0.59 0.61
Katulampa 140.90 131.61 139.22 131.93 0.55 0.64 0.57 0.63
Kawali 180.28 162.67 181.54 170.4 0.69 0.76 0.67 0.72
Cibeureum 88.28 81.96 89.19 87.01 0.58 0.67 0.57 0.64
Perk. Gunung Mas 142.16 123.66 140.51 123.28 0.70 0.80 0.69 0.80
Average 125.05 113.82 125.96 117.84 0.62 0.71 0.62 0.69
Standard deviation 39.30 33.01 39.80 34.33 0.06 0.08 0.05 0.07

Table 3: RMSEP and correlation value of each DCPP based on model scenario

DCPP RMSEP Correlation

Without bias correction Bias correction Without bias correction Bias correction

Without 
dummy

With 
dummy

Without 
dummy

With 
dummy

Without 
dummy

With 
dummy

Without 
dummy

With 
dummy

CNRM-ESM2-1 112.27 109.39 111.91 108.57 0.72 0.74 0.73 0.74
MIROC6                140.70 118.60 141.50 119.50 0.48 0.66 0.47 0.66
MRI-ESM2-0 118.76 112.83 131.05 132.10 0.69 0.72 0.60 0.62
MPI-ESM1-2-HR 128.46 114.44 119.39 111.19 0.60 0.70 0.66 0.72
Average 125.05 113.82 125.96 117.84 0.62 0.71 0.62 0.69
Standard deviation 12.38 3.82 13.01 10.58 0.11 0.03 0.11 0.06

Bayesian Tweedie Compound Poisson Gamma (TCPG) statistical downscaling of rainfall 
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Table 4: RMSEP and correlation value of terrain types

Terrain

RMSEP Correlation

Without bias correction Bias correction Without bias correction Bias correction

Without 
dummy With dummy Without 

dummy With dummy Without 
dummy With dummy Without 

dummy
With 
dummy

Lowland 99.33 91.50 102.65 97.22 0.59 0.69 0.60 0.66
Midland 160.59 147.14 160.38 151.17 0.56 0.70 0.62 0.68
Highland 115.22 102.81 128.71 105.15 0.64 0.74 0.63 0.72

performance with lower prediction errors and higher correlations, 
whereas MIROC6 demonstrated the weakest performance after 
bias correction. The use of dummy variables tends to help maintain 
correlation stability compared to models without dummy variables. 
Overall, the evaluation results based on Table 3 indicated that bias 
correction did not necessarily improve model performance. This 
occurred because the model was strongly affected by seasonal 

variation (dummy variables). 

The addition of dummy variables improved model 
accuracy, both with and without bias correction. Because GCM 
predictors are continuous and often overlap between seasons, they 
cannot explicitly capture categorical seasonal effects. Dummy 
variables allowed the model to represent seasonal heterogeneity 

ROHIMAH et al.

Fig. 4: Comparison plot of actual data with predicted data from the best scenario

Fig. 3: Boxplot of RMSEP and correlation value for dummy and without dummy scenarios

Bayesian Tweedie Compound Poisson Gamma (TCPG) statistical downscaling of rainfall 
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more precisely, providing advantages in identifying distinct seasonal 
influences.

The application of bias correction actually tended to 
degrade model performance, given the data and methods used. The 
Bayesian approach naturally corrected for bias through resampling 
to obtain the posterior distribution. The estimation process 
already incorporated natural bias correction through the posterior 
distribution, making frequentist bias correction irrelevant. 

Comparison of Model Performance between Terrain Types 

The predictive performance of the Bayesian TCPG 
regression model varied across terrains. The best model performance 
was observed in the lowland and highland areas when dummy 
variables were included without bias correction, with RMSEP 
values of 91.5 and 102.81, respectively. This is presented in Table 4.

According to Table 4, the model was capable of predicting 
rainfall in lowland and highland areas with relatively small errors. 
In contrast, the midland area showed the lowest performance, with 
the highest RMSEP value of 160.59. This was consistent with the 
research by Dewanti et al., (2024), which explained that in the 
Stacking-RF ensemble model, bias correction did not improve 
model performance either overall or by terrain types. The limitation 
of Dewanti et al., (2024) was that they did not include dummy 
variables as predictors.

The inclusion of dummy variables as a novelty in this 
study improved the model’s performance in predicting rainfall 
across different elevations. This finding was consistent with the 
study by Annisa et al., (2023), which reported that the inclusion of 
dummy variables in the model improved the estimation of rainfall 
data. Fig. 3 indicates that dummy variables reduced RMSEP and 
increased correlation, especially in lowland and highland areas. 

Best model performance 

Overall, that the model performed best in each station 
and terrain used CNRM-ESM2-1 with dummy and without bias 
correction. The model showed varying performance across stations, 
with the best results at Cibukamanah (R² = 0.70, RMSEP = 96.15) 
and Gunung Mas (R² = 0.64, RMSEP = 124.67), while the lowest 
accuracy was observed at Krangkeng (R² = 0.38, RMSEP = 72.59). 
Overall, the model adequately captured rainfall variability, although 
prediction accuracy differed among stations. This is illustrated in 
Fig. 4.

Based on the best model performance was obtained the 
index parameter p at all stations consistently ranged between 1 < p < 
2 (Katulampa: 1.317; Krangkeng: 1.357; Perkebunan Gunung Mas: 
1.403; Cibukamanah: 1.384; Cibeureum: 1.438; Kawali: 1.471). 
This confirmed that rainfall data followed a compound Poisson 
process with a Gamma component, consistent with the TCPG 
distribution and supporting previous findings (Dunn, 2004; Dzupire 
et al., 2018; Hayati et al., 2021). 

CONCLUSION

Bayesian TCPG regression with principal component 
analysis effectively handles rainfall data and multicollinearity, with 
the best results achieved using the DCPP CNRM-ESM2-1 model 
with dummy variables and without bias correction. This indicated 
that the model has a high capability in capturing local and seasonal 
climate dynamics in West Java, Indonesia. This highlights the 
importance of grouping through dummy variables in enhancing 
model performance. This model performance was reflected at 
almost all stations. In addition, the model performed best in lowland 
and highland areas. From a practical perspective, this approach 
can support agricultural management, water resource planning, 
and disaster mitigation. For future research, the application of 
hierarchical Bayesian structures is recommended to better capture 
spatial variability and enhance model robustness.
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