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ABSTRACT

This study presents reliable methods for estimating clear-sky Land Surface Albedo (LSA) using Machine learning (ML) and satellite data,
aiming to improve climate models and environmental monitoring. Top-of-atmosphere (TOA) radiance data from the Ocean Colour Monitor-3
(OCM-3) sensor aboard the Earth Observing Satellite (EOS-06) satellite containing 13 spectral bands were used, supported by 2.4 million
synthetic simulations generated via the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) Radiative Transfer model (RTM). The
simulations spanned diverse land covers, atmospheric states, sun and viewing geometries covering wavelengths from 0.4 to 2.5 pm. Three ML
models Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Multiple Linear Regression (MLR) were tested. Models were trained
on 70% of the simulated data and tested on remaining 30% data. LSA retrieval was performed using OCM-3 TOA reflectance measurements in
combination with MODIS-derived aerosol optical depth (AOD) and water-vapor inputs. This LSA derived from OCM-3 data then validated with
MODIS LSA product (MCD43A3). Among the three models, RF achieved the best performance, with the lowest RMSE (0.00036) and strong
agreement across various land types with MODIS data. The results confer the potential of ML models, especially RF, combined with radiative
simulations, and can be used for operational estimation of LSA for OCM-3 data.

Keywords: Land surface albedo, Ocean colour monitor-3 (OCM-3), 6S (Second Simulation of a Satellite Signal in the Solar Spectrum), Machine
learning, Random Forest.

Land Surface Albedo (LSA) is vital for Earth’s energy
balance, influencing climate and weather by regulating biophysical
effects of natural and human activities (Lin et al., 2022; Shuai et
al., 2014). It varies by surface type, with bright surfaces like snow
reflecting more sunlight and darker ones like vegetation and water
absorbing more (He et al., 2018). Satellite-derived LSA products
improve climate and weather models by aiding predictions of
temperature, humidity, and ecosystem fluxes (Boussetta et al., 2015;
Kumar et al., 2014). Various satellites provide LSA data at different
resolutions, including Visible Infrared Imaging Radiometer Scale
(VIIRS) (500m & 1km), Multi-angle Imaging Spectro Radiometer
(MISR) (1 km), MODIS Albedo (500 m) and Sentinel-2 (10 m)
(Wang et al., 2013; Martonchik et al., 1998; Chen et al., 2023). This

has increased interest in high-resolution, spatially accurate surface
LSA mapping for climate studies.

LSA estimation often follows a traditional three-step
algorithm. First, atmospheric correction preprocesses satellite
radiance or reflectance data to remove atmospheric effects using
Radiative Transfer Models (RTM) like MODTRAN (Dave et al.,
2023) and 6S (Schaaf et al., 2002). Second, broadband albedo is
derived by converting narrowband reflectance using sensor-specific
empirical coefficients (Liang, 2001) for MODIS and Landsat.
This translation ensures accurate LSA estimation despite varying
sensor spectral responses. Finally, the anisotropic nature of surface
reflectance, its dependence on illumination and viewing angles, is
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corrected using Bidirectional Reflectance Distribution Function
(BRDF) modelling, producing standardized LSA under black-sky
(direct sunlight) and white-sky (diffuse light) conditions.

Traditional BRDF-based methods struggle with bright
surfaces and assume constant atmospheric correction, causing
retrieval errors. To overcome this, direct estimation methods were
developed to link satellite observations to LSA using empirical
or data-driven models, eliminating the need for detailed BRDF
modelling or narrowband-to-broadband conversion (Liang, 2003;
Qu et al., 2014). Physical models generate training samples to
improve accuracy (Wang et al., 2013). This approach has been tested
on various sensors, from low-resolution broadband to multispectral
ones like MODIS and MISR, using inputs such as TOA reflectance,
viewing geometry, and atmospheric parameters (AOD, water vapor,
ozone). However, this method can produce noisy residuals, leading
to occasional spurious LSA estimation.

Recently, ML methods have become powerful tools for
handling nonlinear regression in remote sensing parameter retrieval
(Belgiu and Dragut, 2016). Models like Random Forest (RF),
Artificial Neural Networks (ANN) (Extreme Gradient Boosting
(XGBoost) (Bijlwan et al., 2024) and K-Nearest Neighbors (KNN)
effectively manage complex, nonlinear relationships with flexibility.
Chen et al., (2023) used synthetic datasets from MODIS and RTM
to retrieve high-resolution Sentinel-2 LSA, validating performance
with in-situ measurements across varied terrains. Similar work
(Lin et al., 2022) was carried out to developed a direct estimation
framework for fine-scale LSA mapping using Sentinel-2, combining
high-quality BRDF training data, ESA land cover data, and MODIS
BRDF/LSA products under diverse viewing angles. Despite
progress, challenges remain in extending LSA retrieval to diverse
geographic regions with dynamic land cover changes.

To address existing gaps, a large-scale simulated dataset
was created using the 6S RTM to train and test three machine
learning models: RF, XGBoost, and MLR. These models, developed
from theoretical data, were then applied to actual OCM-3 satellite
reflectance. Their performance was evaluated by comparing
estimated LSA with MODIS LSA products, demonstrating the
models’ ability to deliver reliable, high-resolution LSA across
various landforms.

MATERIALS AND METHODS
Study area

India has a wide range of iconic landscapes dividing the
nation into six physiographic regions mainly - Northern Mountains
consisting of Himalayan ranges, Peninsular Plateaus, Indo-Gangetic
Plains, Thar Desert, and Coastal plains, creating a unique and
diversified background for remote sensing applications (NRSC,
2021). Therefore, to capture this diversity, the present study focuses
on four prominent states of India namely Gujarat, Rajasthan,
Haryana, Madhya Pradesh each with a unique combination of
topography, climate and atmospheric influence that together
represents the major landscapes of the country.

Gujarat with semi-arid zones along with the unique
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saline desert areas of Rann of Kutch, offering a highly reflective
and dynamic surface environment (Mehta et al, 2012). Major
cities like Ahmedabad, Vadodara and Surat have led to rapid
urbanization, further transforming the land covers over Gujarat
state. Moreover, agriculture is a key sector in Gujarat, with crops
like cotton, groundnut, maize, pearl millet and sorghum being
prominently cultivated in its fertile plains (ICAR, 2025) which
provides seasonal variation in LSA. Rajasthan can be divided into
four major regions, the western desert along with barren hills, level
rocky or sandy plains, the Aravalli hills and south-eastern plateau
with varied climate from semi-arid to arid and categorized by dry,
barren terrain with minimal vegetation and rainfall makes it suitable
for evaluating model robustness over bright, high LSA surfaces
(Sharma et al., 2015). Haryana, is a landlock arid to semi-arid state
in the North Western region of India with highly cultivable regions,
it is a subsection of the Indo-Gangetic Plain lying with intensively
managed croplands and seasonal vegetation. (Singh et al.,, 2023).
Madhya Pradesh covers a diverse terrain including dense forests,
open shrubland, farmlands, and plateau regions a mix of natural and
anthropogenic surface types, best suited for examining the model
performance across diverse and heterogeneous landscapes (Lohare
etal., 2023).

Together, these regions capture the wide environmental
and geographical variability of India which allows to check the
robustness of the developed method and supports the creation of
more reliable and high-resolution LSA products that can be applied
across varying landscapes.

OCM TOA reflectance

This study utilizes the level-1C Top of Atmosphere (TOA)
radiance (Level-1 RadianceGeoreferenced) (mW-cm™2-sr'-um™)
datasets of the Ocean Colour Monitor (OCM-3) sensor at a spatial
resolution of 360m (Local Area Cover — LAC) with less than 10%
cloud coverage, acquired from Bhoonidhi Portal (https://bhoonidhi.
nrsc.gov.in/ ). The obtained TOA radiance was pre-processed and
converted to TOA-reflectance equation (1)

_ ™Llroam
RTOA O\) Eo(A) cos O )

where, R, = - Calculated TOA-Reflectance, L,,, - Level-1C TOA
radiance of OCM-3 sensor, E - Solar spectral irradiance, 6- Solar
zenith angle (SZA), L — Wavelength, d - Earth Sun distance.

The data comprises of 13 spectral bands of OCM-3 sensor
as summarized in (Table 1) along with the associated band-wise
solar spectral irradiance (Eo) (Pandya and Pathak, 2021) which
served as fundamental inputs for converting TOA-radiance to TOA-
reflectance.

MODIS land surface albedo (MCD43A3)

The Moderate Resolution Imaging Spectroradiometer
(MODIS) product (MCD43A3, V061) provided by NASA
land processes distributed active archive center (NASA,
2015) and accessed via Google Earth Engine (GEE) platform
(https://developers.google.com/earth-engine/datasets/catalog/
MODIS 061 MCD43A3) was used in this study as reference
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Table 1: Spectral characteristics of OCM-3 bands and
corresponding solar irradiance (Eo).

Band No  OCM3 band range (um) Solar spectral irradiance
Bandwidth(nm) (E0) (mW-cm™2-pm™)
1 0.402 - 0.422 (20) 171.60
2 0.438 - 0.448 (10) 188.05
3 0.485 - 0.495 (10) 192.87
4 0.505 - 0.515 (10) 191.20
5 0.550 - 0.560 (10) 186.17
6 0.561 -0.571 (10) 183.95
7 0.615-0.625 (10) 165.02
8 0.665 - 0.675 (10) 150.93
9 0.677 - 0.685 (08) 146.91
10 0.705 - 0.715 (10) 138.76
11 0.775 - 0.785 (10) 115.51
12 0.860 - 0.880 (20) 97.19
13 0.990 - 1.030 (20) 74.93

dataset for validating the retrieved OCM-3 LSA using the proposed
ML models.

MODIS aerosol optical depth & water vapor (MCD19A42.061)

The MCD19A2 V6.1 data product acquired from GEE
platform (https://developers.google.com/earthengine/datasets/
catalog/MODIS 061 MCD19A2 GRANULES) is a combination
of observations from MODIS terra and aqua using the Multi-angle
Implementation of Atmospheric Correction (MAIAC) algorithm
It provides daily level-2 gridded observations of AOD 0.55 pum
(Green band) and column-WV over land at 1 km resolution,
retrieved from near-IR bands at 0.94 um. Both of these are essential
for understanding its influence on aerosol behaviour, atmospheric
moisture content and air quality in real environmental conditions
(Lyapustin et al., 2022). Both these datasets of AOD and WV were
re-gridded to match the spatial resolution of the OCM-3 and then
were subsequently utilized to generate LSA observations.

Eco stress spectra library

The eco-stress spectral library version 1.0 (Meerdink,
et al., 2019) is a widespread collection of high-resolution spectral
reflectance data for a diverse range of materials such as natural,
manmade and vegetation (including non-photosynthetic vegetation).
This study incorporates such diverse surface reflectance’s for
simulations across varied landforms to match the real-world
scenarios and to achieve higher precision for LSA retrieval. The
methodology is divided into three steps (Fig. 1) for retrieving LSA
from OCM-3 data, addressing atmospheric, geometric, and surface
variability to optimize accuracy.

Methodology

This study utilizes satellite observations of Oceansat-3
Top-of-atmosphere radiance together with MODIS-derived aerosol
optical depth (AOD) and water vapor (WV) products over varied
spatial and temporal coverages. Gujarat and Rajasthan were observed
on 11" February 2024 and 01" November 2024, while Haryana was
covered on 11" February 2024 and 01 November 2023. For Madhya
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Pradesh, observations were obtained for 20" February 2024 and 06™
November 2024.

Initially, the 6S RTM was utilized to simulate at-sensor
radiance for OCM-3’s 13 spectral bands and broadband range (0.4
- 2.5 pm) across diverse atmospheric, solar, surface, and viewing.
Broadband surface reflectance obtained from these simulations
served as the target variable whereas key geometric parameters -
Solar Zenith Angle (SZA), View Zenith Angle (VZA), Solar Azimuth
Angle (SAZ), and View Azimuth Angle (VAZ), Atmospheric
variables - Aerosol Optical Depth (AOD), Water Vapor (WV) and
TOA-Reflectance were considered as input features (Equation-2)
while training all four models. From a total of 1,76,400 simulations
per band (i.e. in total 22,93,200 simulations), a merged dataset was
created splitting 70% of samples (i.e. 1,23,480) as training dataset
and remaining 30% (52,920 samples) as testing dataset to enhance
model robustness and adaptability.

LSA = f (Refl, , WV, Aero, SZA, SAZ, VZA. VAZ) )

TOA’

Second, the three machine learning models (RF, XGBoost,
MLR) developed using these training datasets, were then applied
to observed OCM-3 TOA-reflectance and MODIS products (AOD,
WV) re-gridded at the same resolution offers a precise alternative
to generate high resolution retrieved LSA estimates over four states
of India. Lastly, these retrieved LSA were then validated against
MODIS (MCD43A3) products to confirm the accuracy of the
estimates and hence the model performance.

6S radiative transfer simulations

The 6S (Second Simulation of a Satellite Signal in the
Solar Spectrum) Radiative Transfer Model (RTM) (Vermote et
al ,1997) was employed to simulate diverse atmospheric and
surface conditions for the OCM-3 spectral bands. Simulations were
carried out under varying geometric and atmospheric conditions,
including different aerosol types, surface conditions, water vapor
levels, solar and viewing geometries. Further, to enhance the
surface recognition beyond the default three classes in 6S mainly
water, sand and vegetation, 100 different LULC spectral classes
from the ECOSTRESS Spectral Library were used as input surface
reflectance. This allowed the generation of a comprehensive
lookup table (Table 2), which played a critical role in improving
the accuracy of the LSA retrieval by efficiently integrating these
training datasets to develop the machine learning models.

Implementation of machine learning (ML) models

Retrieving LSA from satellite data involves complex, non-
linear interactions of surface reflectance, atmosphere, and land cover
properties. ML models like RF, Decision Trees (DT), and Gradient
Boosting handle large datasets more effectively than traditional
methods, yielding higher-resolution albedo predictions while
reducing retrieval uncertainties (Chen et al, 2023). Data-driven
approaches including ML, improve land surface classification,
thus enhancing LSA estimation across diverse regions. In this
study, regression models (RF, XGBoost, MLR) estimate broadband
albedo using theoretical 6S-RTM simulations and OCM-3 satellite
observations. Modelling and validation were implemented in
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Table 2: Variations in input parameters for 6S Radiative Transfer Model (RTM) simulations

Parameters Variations Total permutations
Solar zenith angle (SZA®) 0, 10, 20, 30, 40, 50, 60 7
View zenith angle (VZA®) 0, 10, 20, 30, 40, 50 6
Acrosol optical depth (AOT) 0.1,0.2,0.3,0.4,0.5,0.6, 0.7 7
Water vapor (WV - g/cm?) 0.25,1,2,3,4,45 6

Land cover types (ECOSTRESS spectral library)

vegetation, sand, water, man-made, minerals, soils, mixed classes 100

Tropical Atmospheric
Profile

Surface Reflectance

(ECOSTRESS Library)

Sun and Viewing
geometry

Sun-view geometries

N

N

7/

'

Radiative Transfer Model (RTM)
Satellite-level signal Simulation

¥
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TOA reflectance:

v

Develop Machine Learning
Framework

[

Input Features: TOA Reflectance, Sun view geometrics and

Atmospheric Parameters (AOT, WV)
y

Training and Validation

8§ 8 8

¥
Oceansat-3
Land Surface Albedo (LSA)
¥
Validation: Compare with MODIS Albedo | Ao Me.t res
Evaluation

Fig. 1: Flowchart illustrating the methodology for LSA estimation using machine learning.

Python, detailing the principles and parameter settings for each
algorithm.

Multiple linear regression (MLR)

MLR models the linear relationship between a dependent
variable and multiple independent variables, estimating outcomes
with a linear combination of predictors. Coefficients indicate how
changes in each variable affect the outcome, and the model uses
Ordinary Least Squares (OLS) to minimize prediction errors. The
mathematical formulation for MLR (Montgomery et al., 2012) is

commonly expressed as:
Y=BHB X B, X, 4B X Fe (€)

Where: Y- is the dependent variable, X ,X,,..., X - are the
independent variables, f - is the intercept term, f,, B,., Bn - are the
coefficients corresponding to each independent variable, and € - is

the error term, representing unexplained variance.

MLR is widely used for estimation and understanding
factor influences, butassumptions like linearity and homoscedasticity
must be checked for reliability.

Random forest (RF)

RF, as defined by Breiman (2001), is an ensemble learning
model that combines multiple decision trees to produce a single
result. It handles complex datasets, continuous variables, and reduces
overfitting, making it suitable for classification and regression tasks.
In this study, the RF regression model was optimized via extensive
hyperparameter tuning using a randomized search over 50+
combinations with 5-fold cross-validation. Parameters like number
of estimators, tree depth, minimum samples for splits and leaves,
feature selection, and bootstrap sampling were tuned to minimize
RMSE on test data. The final optimized configuration is detailed
in Table 3.

Extreme gradient boosting (XGBoost)

XGBoost is an optimized boosting algorithm (Chen and
Guestrin, 2016) that builds trees sequentially to correct previous
errors, improving efficiency and predictive performance over
Random Forest, which averages independent trees. It incorporates
regularization to prevent overfitting. The XGBoost regression model
was extensively tuned using Random Search CV with 100 iterations
and 5-fold cross-validation, optimizing parameters like the number
of trees, learning rate, tree depth, regularization terms, and pruning
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Table 4: XGBoost configuration and tuning Parameters

Hyperparameter ~ Search Space Best Value Found
n_estimators [100, 200, 300, 400, 500] 400

max_depth [5, 10, 20, None] None
min_samples_split [2, 5, 10] 3
min_samples leaf [1,2, 4] 1

max_features [‘auto’, ‘sqrt’, ‘log2’] ‘sqrt’

bootstrap [True, False] False

(Table 4), with early stopping to enhance generalization.

Models were trained on 6S-simulated TOA reflectance
data including solar geometry, atmospheric variability, and spectral
signatures to capture complex surface-atmosphere interactions.
This comprehensive training enabled the models to learn non-
linear relationships between TOA reflectance and LSA across
diverse conditions. The trained models were validated with real
OCM-3 satellite data to assess their applicability, and the retrieved
LSA values were compared with MODIS products to benchmark
accuracy and reliability.

Error analysis

To assess the performance of each of these three ML
models, two commonly used metrics such as - Root Mean Square
Error (RMSE) and bias were calculated to get insights into the
model’s accuracy, consistency, and retrieval capability.

The assessment was two stepped:

Test RMSE: Computed using 30% of the theoretical dataset i.e.
Test dataset to assess how well the models generalize to unseen
simulated data.

Validation RMSE and Bias: Calculated by applying the trained
models to real OCM-3 and MODIS (AOD, WV) observations and

Comparison of RMSE across Models
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" 6
Q
~
X
& 4
s
44

: 0.810

0.360 '
0
RF XGBoost MLR
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ML Retrieved
S © o
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U
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S ©
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Hyperparameter Search Space Explored Best Value
Found
n_estimators [100, 200, 300, 500, 700, 1000] 300
learning_rate [0.001, 0.01, 0.05, 0.1, 0.2, 0.3] 0.05
max_depth [3,4,5,6,8,10] 10
min_child weight [1, 3,5, 7] 1
subsample [0.5,0.6,0.7,0.8, 0.9, 1.0] 1
colsample bytree [0.5, 0.6, 0.7, 0.8, 0.9, 1.0] 0.5
gamma [0, 0.01, 0.1, 0.3, 0.5] 0
reg_alpha [0, 0.001, 0.01, 0.1, 1, 10] 0
reg_lambda [0.01,0.1,0.5,1, 1.5,2, 10] 2

comparing the estimated LSA values with MODIS LSA products,
thereby assessing real-world performance. The formulas used are:

Bias=LSA -LSA, )

Yi=1n ((Albedog (i)—Albedoy(i))?
n

RMSE= \/

®)

The above equations involve the following terms: LSA

gives the Estimated values by the models, LSA refers to the

Reference LSA measurements (whether simulated test samples or
MODIS measurements), n is the number of observations.

RESULTS AND DISCUSSION

LSA estimates over varied geographical and environmental
conditions

A two-part analysis was conducted to evaluate the
accuracy of three ML models (Fig. 2) for estimating LSA. The first
step involved developing the three models such as RF, XGBoost
and MLR using 70% samples for training, built on inputs such as
TOA reflectance, AOD, WV, with solar and viewing geometry. In

Retrievedvs. Simulated Albedo for Different Models

s RF o
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0.8

Fig. 2: (a) RMSE (x107?) values for three ML models in a bar chart (b) Scatter plot of retrieved versus 6S simulated albedo for three ML models
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Fig. 4: MODIS and ML model-estimated LSA over (a) Gujarat, (b) Rajasthan, (c) Haryana, and (d) Madhya Pradesh for February, along with

corresponding ML model and MODIS albedo difference histogram
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Table 5: RMSE and bias values for RF, XGBoost, and MLR across different dates over diverse locations.
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Location Date RF XGBoost MLR

RMSE Bias RMSE Bias RMSE Bias

Gujarat 11" Feb, 2024 0.041 0.014 0.049 0.024 0.328 0.299
01% Nov, 2024 0.039 0.013 0.049 0.024 0.353 0.321

Haryana 11" Feb, 2024 0.031 0.019 0.050 0.041 0.555 0.533
01% Nov, 2024 0.050 0.004 0.050 0.005 0.186 0.163

Rajasthan 11" Feb, 2024 0.023 0.015 0.038 0.032 0.376 0.357
01* Nov, 2024 0.024 -0.003 0.027 0.013 0.295 0.286

Madhya Pradesh 20" Feb, 2024 0.027 0.021 0.037 0.029 0.400 0.377
06" Nov, 2024 0.060 0.029 0.059 0.029 0.262 0.246

the second step, the accuracy of each of these models was assessed
using the remaining 30% test samples of the theoretical dataset. As
shown in Fig. 2a, the RF model achieved lowest RMSE (0.360 x
10-3), depicting higher precision in learning the nonlinear relations
between the parameters of the theoretical dataset. XGBoost, another
tree-based model was followed with a slightly higher RMSE (0.810
x 10-3) while the basic MLR model performed very poorly with
an RMSE of 7.130 x 10-3, highlighting its limitations due to the
linearly assumption. Similarly, the scatter plot (Fig. 2b) also shows
that the estimation made by the tree-based models (RF & XGBoost)
closely aligns with the 1:1 reference line, whereas the MLR models
displays noticeable deviations. These findings derived from the
theoretical dataset confirms that the ensemble-based models like RF
and XGBoost are more suitable for capturing the complex dynamics
simulated by the 6S-RTM, laying a reliable foundation for further
testing the model’s performance for actual observations collected
from OCM-3 sensor. Therefore, we now proceed to evaluate the
performance of these three models using the data collected over
the diverse landforms of India, while also considering temporal
variability in the measurements.

Spatial and temporal comparisons (Fig. 3 & Fig. 4)
were carried out using the MODIS-derived LSA across multiple
regions such as Gujarat (11" February, 01 November), Haryana
(01% November, 11" February), Rajasthan (11" February, 01%
November), Madhya Pradesh (20" February, 06* November). In
Gujarat, the RF model consistently outperformed the remaining two
models, achieving RMSE values ranging from 0.021 to 0.041 and
Bias observed to be very close to zero. XGBoost followed closely,
particularly for December with an RMSE of 0.021 signifying that the
tree-based models were well-and more effective as compared to the
simple MLR model which gave higher errors for these conditions.

For Madhya Pradesh, as for 20" February the RF models
had attained lower RSME values 0.020 with almost negligible
bias, thereby highlighting the model’s strong performance for
regions with mixed terrain and land use conditions. Whereas on
6" November, both RF and XGBoost models maintained more
accuracy (RMSE: 0.06) indicating that for varying seasonal and
surface characteristics, the tree-based ensemble models can deliver
more efficient LSA estimates.

In Rajasthan, the variances between the models were
minimal. For instance, for 1* November the two models, RF (0.024),
and XGBoost (0.027) generated similar results depicting that given

sufficient feature information, both models can give better accuracy
for LSA estimation. Similar, the RF model performed better in
Haryana on 11" February with RMSE of 0.031, although XGBoost
and MLR models demonstrated comparatively lower performances.

The regional analysis was conducted to evaluate
the accuracy of different ML models in estimating LSA over
diverse landforms, with an aim of assessing the robustness
and generalizability of these models based on the performance
indicators such as RMSE to quantify average prediction errors and
Bias values to reflect the tendency to systematically overestimate or
underestimate LSA (Table 5).

However, the MLR model consistently showed the lowest
performance across all regions and time period, with RMSE values
exceeding 0.3 and reaching as high as 0.555 in Haryana and notably
higher bias valued as well. These results highlight the limitations
of linear models in capturing the complex and nonlinear patterns
present in the observations especially when applied to diverse land
surfaces.

Overall, the analyses suggest that while RF model
consistently demonstrate higher accuracy and was found to be well-
suited for capturing complex spatiotemporal patterns, other tree-
based ensemble model like XGBoost also offers reliable estimates.
Their ability to deliver comparable results, coupled with lower
computational requirements with the ease of implementation, makes
them suitable for applications where computational efficiency and
rapid deployment are essential.

CONCLUSION

This study was undertaken to systematically evaluate
the ability of multiple machine learning (ML) models to reliably
estimate clear sky land surface albedo (LSA) across diverse
landforms over India. Three widely used ML models Random Forest
(RF), Extreme Gradient Boosting (XGBoost), and Multiple Linear
Regression (MLR) were trained using synthetic data generated by
the 6S Radiative Transfer Model (RTM) and validated both on
simulated test samples and actual satellite observations, including
MODIS LSA products. The findings indicate that certain ML
models, particularly RF, are more effective at capturing complex
patterns in the data, resulting in higher accuracy and lower prediction
errors. RF not only exhibited the best overall performance across
varied terrains but also closely matched the MODIS LSA product,
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thereby demonstrating its strong generalization capabilities. Its
consistent accuracy when trained on physically based simulations
underlines its adaptability and strength for geophysical parameter
retrieval. Although XGBoost gave comparable performance, but
it consistently trailed Random Forest in estimative accuracy. The
MLR model, constrained by its assumption of linearity, showed
comparatively higher errors and limited capability in modelling the
nonlinear nature of LSA variations across India. In conclusion, this
study demonstrates the effectiveness of integrating ML algorithms
with radiative transfer simulations for satellite based LSA estimation.
The proposed approach offers a promising framework for large scale
remote sensing applications, providing more accurate and consistent
LSA retrieval using data from EO sensors like OCM-3.
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