
Land Surface Albedo (LSA) is vital for Earth’s energy 
balance, influencing climate and weather by regulating biophysical 
effects of natural and human activities (Lin et al., 2022; Shuai et 
al., 2014). It varies by surface type, with bright surfaces like snow 
reflecting more sunlight and darker ones like vegetation and water 
absorbing more (He et al., 2018). Satellite-derived LSA products 
improve climate and weather models by aiding predictions of 
temperature, humidity, and ecosystem fluxes (Boussetta et al., 2015; 
Kumar et al., 2014). Various satellites provide LSA data at different 
resolutions, including Visible Infrared Imaging Radiometer Scale 
(VIIRS) (500m & 1km), Multi-angle Imaging Spectro Radiometer 
(MISR) (1 km), MODIS Albedo (500 m) and Sentinel-2 (10 m) 
(Wang et al., 2013; Martonchik et al., 1998; Chen et al., 2023). This 

has increased interest in high-resolution, spatially accurate surface 
LSA mapping for climate studies.

LSA estimation often follows a traditional three-step 
algorithm. First, atmospheric correction preprocesses satellite 
radiance or reflectance data to remove atmospheric effects using 
Radiative Transfer Models (RTM) like MODTRAN (Dave et al., 
2023) and 6S (Schaaf et al., 2002). Second, broadband albedo is 
derived by converting narrowband reflectance using sensor-specific 
empirical coefficients (Liang, 2001) for MODIS and Landsat. 
This translation ensures accurate LSA estimation despite varying 
sensor spectral responses. Finally, the anisotropic nature of surface 
reflectance, its dependence on illumination and viewing angles, is 
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This study presents reliable methods for estimating clear-sky Land Surface Albedo (LSA) using Machine learning (ML) and satellite data, 
aiming to improve climate models and environmental monitoring. Top-of-atmosphere (TOA) radiance data from the Ocean Colour Monitor-3 
(OCM-3) sensor aboard the Earth Observing Satellite (EOS-06) satellite containing 13 spectral bands were used, supported by 2.4 million 
synthetic simulations generated via the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) Radiative Transfer model (RTM). The 
simulations spanned diverse land covers, atmospheric states, sun and viewing geometries covering wavelengths from 0.4 to 2.5 µm. Three ML 
models Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Multiple Linear Regression (MLR) were tested. Models were trained 
on 70% of the simulated data and tested on remaining 30% data. LSA retrieval was performed using OCM-3 TOA reflectance measurements in 
combination with MODIS-derived aerosol optical depth (AOD) and water-vapor inputs. This LSA derived from OCM-3 data then validated with 
MODIS LSA product (MCD43A3). Among the three models, RF achieved the best performance, with the lowest RMSE (0.00036) and strong 
agreement across various land types with MODIS data. The results confer the potential of ML models, especially RF, combined with radiative 
simulations, and can be used for operational estimation of LSA for OCM-3 data.
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corrected using Bidirectional Reflectance Distribution Function 
(BRDF) modelling, producing standardized LSA under black-sky 
(direct sunlight) and white-sky (diffuse light) conditions.

Traditional BRDF-based methods struggle with bright 
surfaces and assume constant atmospheric correction, causing 
retrieval errors. To overcome this, direct estimation methods were 
developed to link satellite observations to LSA using empirical 
or data-driven models, eliminating the need for detailed BRDF 
modelling or narrowband-to-broadband conversion (Liang, 2003; 
Qu et al., 2014). Physical models generate training samples to 
improve accuracy (Wang et al., 2013). This approach has been tested 
on various sensors, from low-resolution broadband to multispectral 
ones like MODIS and MISR, using inputs such as TOA reflectance, 
viewing geometry, and atmospheric parameters (AOD, water vapor, 
ozone). However, this method can produce noisy residuals, leading 
to occasional spurious LSA estimation.

Recently, ML methods have become powerful tools for 
handling nonlinear regression in remote sensing parameter retrieval 
(Belgiu and Drăguț, 2016). Models like Random Forest (RF), 
Artificial Neural Networks (ANN) (Extreme Gradient Boosting 
(XGBoost) (Bijlwan et al., 2024) and K-Nearest Neighbors (KNN) 
effectively manage complex, nonlinear relationships with flexibility. 
Chen et al., (2023) used synthetic datasets from MODIS and RTM 
to retrieve high-resolution Sentinel-2 LSA, validating performance 
with in-situ measurements across varied terrains. Similar work 
(Lin et al., 2022) was carried out to developed a direct estimation 
framework for fine-scale LSA mapping using Sentinel-2, combining 
high-quality BRDF training data, ESA land cover data, and MODIS 
BRDF/LSA products under diverse viewing angles. Despite 
progress, challenges remain in extending LSA retrieval to diverse 
geographic regions with dynamic land cover changes.

To address existing gaps, a large-scale simulated dataset 
was created using the 6S RTM to train and test three machine 
learning models: RF, XGBoost, and MLR. These models, developed 
from theoretical data, were then applied to actual OCM-3 satellite 
reflectance. Their performance was evaluated by comparing 
estimated LSA with MODIS LSA products, demonstrating the 
models’ ability to deliver reliable, high-resolution LSA across 
various landforms. 

MATERIALS AND METHODS

 Study area

India has a wide range of iconic landscapes dividing the 
nation into six physiographic regions mainly - Northern Mountains 
consisting of Himalayan ranges, Peninsular Plateaus, Indo-Gangetic 
Plains, Thar Desert, and Coastal plains, creating a unique and 
diversified background for remote sensing applications (NRSC, 
2021). Therefore, to capture this diversity, the present study focuses 
on four prominent states of India namely Gujarat, Rajasthan, 
Haryana, Madhya Pradesh each with a unique combination of 
topography, climate and atmospheric influence that together 
represents the major landscapes of the country. 

Gujarat with semi-arid zones along with the unique 

saline desert areas of Rann of Kutch, offering a highly reflective 
and dynamic surface environment (Mehta et al., 2012). Major 
cities like Ahmedabad, Vadodara and Surat have led to rapid 
urbanization, further transforming the land covers over Gujarat 
state. Moreover, agriculture is a key sector in Gujarat, with crops 
like cotton, groundnut, maize, pearl millet and sorghum being 
prominently cultivated in its fertile plains (ICAR, 2025) which 
provides seasonal variation in LSA. Rajasthan can be divided into 
four major regions, the western desert along with barren hills, level 
rocky or sandy plains, the Aravalli hills and south-eastern plateau 
with varied climate from semi-arid to arid and categorized by dry, 
barren terrain with minimal vegetation and rainfall makes it suitable 
for evaluating model robustness over bright, high LSA surfaces 
(Sharma et al., 2015). Haryana, is a landlock arid to semi-arid state 
in the North Western region of India with highly cultivable regions, 
it is a subsection of the Indo-Gangetic Plain lying with intensively 
managed croplands and seasonal vegetation. (Singh et al., 2023). 
Madhya Pradesh covers a diverse terrain including dense forests, 
open shrubland, farmlands, and plateau regions a mix of natural and 
anthropogenic surface types, best suited for examining the model 
performance across diverse and heterogeneous landscapes (Lohare 
et al., 2023). 

Together, these regions capture the wide environmental 
and geographical variability of India which allows to check the 
robustness of the developed method and supports the creation of 
more reliable and high-resolution LSA products that can be applied 
across varying landscapes.

OCM TOA reflectance

This study utilizes the level-1C Top of Atmosphere (TOA) 
radiance (Level-1_RadianceGeoreferenced) (mW·cm⁻²·sr⁻¹·μm⁻¹) 
datasets of the Ocean Colour Monitor (OCM-3) sensor at a spatial 
resolution of 360m (Local Area Cover – LAC) with less than 10% 
cloud coverage, acquired from Bhoonidhi Portal (https://bhoonidhi.
nrsc.gov.in/ ). The obtained TOA radiance was pre-processed and 
converted to TOA-reflectance equation (1) 

	 	 (1)     

where, RTOA - Calculated TOA-Reflectance, LTOA - Level-1C TOA 
radiance of OCM-3 sensor, E0 - Solar spectral irradiance, θ- Solar 
zenith angle (SZA), λ – Wavelength, d - Earth Sun distance.

The data comprises of 13 spectral bands of OCM-3 sensor 
as summarized in (Table 1) along with the associated band-wise 
solar spectral irradiance (E₀) (Pandya and Pathak, 2021) which 
served as fundamental inputs for converting TOA-radiance to TOA-
reflectance.

MODIS land surface albedo (MCD43A3)

The Moderate Resolution Imaging Spectroradiometer 
(MODIS) product (MCD43A3, V061) provided by NASA 
land processes distributed active archive center (NASA, 
2015)  and accessed via Google Earth Engine (GEE) platform 
(https://developers.google.com/earth-engine/datasets/catalog/
MODIS_061_MCD43A3) was used in this study as reference 
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dataset for validating the retrieved OCM-3 LSA using the proposed 
ML models.  

MODIS aerosol optical depth & water vapor (MCD19A2.061)

The MCD19A2 V6.1 data product acquired from GEE 
platform (https://developers.google.com/earthengine/datasets/
catalog/MODIS_061_MCD19A2_GRANULES)  is a combination 
of observations from MODIS terra and aqua using the Multi-angle 
Implementation of Atmospheric Correction (MAIAC) algorithm 
It provides daily level-2 gridded observations of AOD 0.55 µm 
(Green band) and column-WV over land at 1 km resolution, 
retrieved from near-IR bands at 0.94 μm. Both of these are essential 
for understanding its influence on aerosol behaviour, atmospheric 
moisture content and air quality in real environmental conditions 
(Lyapustin et al., 2022). Both these datasets of AOD and WV were 
re-gridded to match the spatial resolution of the OCM-3 and then 
were subsequently utilized to generate LSA observations.

Eco stress spectra library

The eco-stress spectral library version 1.0 (Meerdink, 
et al., 2019) is a widespread collection of high-resolution spectral 
reflectance data for a diverse range of materials such as natural, 
manmade and vegetation (including non-photosynthetic vegetation). 
This study incorporates such diverse surface reflectance’s for 
simulations across varied landforms to match the real-world 
scenarios and to achieve higher precision for LSA retrieval. The 
methodology is divided into three steps (Fig. 1) for retrieving LSA 
from OCM-3 data, addressing atmospheric, geometric, and surface 
variability to optimize accuracy. 

Methodology

This study utilizes satellite observations of Oceansat-3 
Top-of-atmosphere radiance together with MODIS-derived aerosol 
optical depth (AOD) and water vapor (WV) products over varied 
spatial and temporal coverages. Gujarat and Rajasthan were observed 
on 11th February 2024 and 01th November 2024, while Haryana was 
covered on 11th February 2024 and 01 November 2023. For Madhya 

Pradesh, observations were obtained for 20th February 2024 and 06th 
November 2024. 

Initially, the 6S RTM was utilized to simulate at-sensor 
radiance for OCM-3’s 13 spectral bands and broadband range (0.4 
- 2.5 µm) across diverse atmospheric, solar, surface, and viewing. 
Broadband surface reflectance obtained from these simulations 
served as the target variable whereas key geometric parameters - 
Solar Zenith Angle (SZA), View Zenith Angle (VZA), Solar Azimuth 
Angle (SAZ), and View Azimuth Angle (VAZ), Atmospheric 
variables - Aerosol Optical Depth (AOD), Water Vapor (WV) and 
TOA-Reflectance were considered as input features (Equation-2) 
while training all four models. From a total of 1,76,400 simulations 
per band (i.e. in total 22,93,200 simulations), a merged dataset was 
created splitting 70% of samples (i.e. 1,23,480) as training dataset 
and remaining 30% (52,920 samples) as testing dataset to enhance 
model robustness and adaptability.

LSA = f (ReflTOA, WV, Aero, SZA, SAZ, VZA. VAZ)                        (2)

Second, the three machine learning models (RF, XGBoost, 
MLR) developed using these training datasets, were then applied 
to observed OCM-3 TOA-reflectance and MODIS products (AOD, 
WV) re-gridded at the same resolution offers a precise alternative 
to generate high resolution retrieved LSA estimates over four states 
of India. Lastly, these retrieved LSA were then validated against 
MODIS (MCD43A3) products to confirm the accuracy of the 
estimates and hence the model performance.

6S radiative transfer simulations

The 6S (Second Simulation of a Satellite Signal in the 
Solar Spectrum) Radiative Transfer Model (RTM) (Vermote et 
al.,1997) was employed to simulate diverse atmospheric and 
surface conditions for the OCM-3 spectral bands. Simulations were 
carried out under varying geometric and atmospheric conditions, 
including different aerosol types, surface conditions, water vapor 
levels, solar and viewing geometries. Further, to enhance the 
surface recognition beyond the default three classes in 6S mainly 
water, sand and vegetation, 100 different LULC spectral classes 
from the ECOSTRESS Spectral Library were used as input surface 
reflectance. This allowed the generation of a comprehensive 
lookup table (Table 2), which played a critical role in improving 
the accuracy of the LSA retrieval by efficiently integrating these 
training datasets to develop the machine learning models. 

Implementation of machine learning (ML) models 

Retrieving LSA from satellite data involves complex, non-
linear interactions of surface reflectance, atmosphere, and land cover 
properties. ML models like RF, Decision Trees (DT), and Gradient 
Boosting handle large datasets more effectively than traditional 
methods, yielding higher-resolution albedo predictions while 
reducing retrieval uncertainties (Chen et al., 2023). Data-driven 
approaches including ML, improve land surface classification, 
thus enhancing LSA estimation across diverse regions. In this 
study, regression models (RF, XGBoost, MLR) estimate broadband 
albedo using theoretical 6S-RTM simulations and OCM-3 satellite 
observations. Modelling and validation were implemented in 

Table 1: 	Spectral characteristics of OCM-3 bands and 
corresponding solar irradiance (E₀).

Band No OCM3 band range (µm) 
Bandwidth(nm)

Solar spectral irradiance 
(E0) (mW·cm⁻²·μm⁻¹)

1 0.402 - 0.422 (20) 171.60
2 0.438 - 0.448 (10) 188.05
3 0.485 - 0.495 (10) 192.87
4 0.505 - 0.515 (10) 191.20
5 0.550 - 0.560 (10) 186.17
6 0.561 - 0.571 (10) 183.95
7 0.615 - 0.625 (10) 165.02
8 0.665 - 0.675 (10) 150.93
9 0.677 - 0.685 (08) 146.91
10 0.705 - 0.715 (10) 138.76
11 0.775 - 0.785 (10) 115.51
12 0.860 - 0.880 (20) 97.19
13 0.990 - 1.030 (20) 74.93

Machine learning approaches for Land Surface Albedo (LSA) retrieval using OCM-3 data
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Python, detailing the principles and parameter settings for each 
algorithm.

Multiple linear regression (MLR)

MLR models the linear relationship between a dependent 
variable and multiple independent variables, estimating outcomes 
with a linear combination of predictors. Coefficients indicate how 
changes in each variable affect the outcome, and the model uses 
Ordinary Least Squares (OLS) to minimize prediction errors. The 
mathematical formulation for MLR (Montgomery et al., 2012) is 
commonly expressed as:

	 Y=β0+β1X1+β2X2+⋯+βnXn+ϵ                              (3)

Where: Y- is the dependent variable, X1,X2,…, Xn - are the 
independent variables, β0 - is the intercept term, β1, β2., βn - are the 
coefficients corresponding to each independent variable, and ϵ - is 
the error term, representing unexplained variance.

	 MLR is widely used for estimation and understanding 
factor influences, but assumptions like linearity and homoscedasticity 
must be checked for reliability.

Random forest (RF)

RF, as defined by Breiman (2001), is an ensemble learning 
model that combines multiple decision trees to produce a single 
result. It handles complex datasets, continuous variables, and reduces 
overfitting, making it suitable for classification and regression tasks. 
In this study, the RF regression model was optimized via extensive 
hyperparameter tuning using a randomized search over 50+ 
combinations with 5-fold cross-validation. Parameters like number 
of estimators, tree depth, minimum samples for splits and leaves, 
feature selection, and bootstrap sampling were tuned to minimize 
RMSE on test data. The final optimized configuration is detailed 
in Table 3.

Extreme gradient boosting (XGBoost)

XGBoost is an optimized boosting algorithm (Chen and 
Guestrin, 2016) that builds trees sequentially to correct previous 
errors, improving efficiency and predictive performance over 
Random Forest, which averages independent trees. It incorporates 
regularization to prevent overfitting. The XGBoost regression model 
was extensively tuned using Random Search CV with 100 iterations 
and 5-fold cross-validation, optimizing parameters like the number 
of trees, learning rate, tree depth, regularization terms, and pruning 

Fig. 1: Flowchart illustrating the methodology for LSA estimation using machine learning.

Table 2:  Variations in input parameters for 6S Radiative Transfer Model (RTM) simulations

Parameters Variations Total permutations
Solar zenith angle (SZAº) 0, 10, 20, 30, 40, 50, 60 7
View zenith angle (VZAº) 0, 10, 20, 30, 40, 50 6
Aerosol optical depth (AOT) 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 7
Water vapor (WV - g/cm²) 0.25, 1, 2, 3, 4, 4.5 6
Land cover types (ECOSTRESS spectral library)  vegetation, sand, water, man-made, minerals, soils, mixed classes 100
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(Table 4), with early stopping to enhance generalization. 

Models were trained on 6S-simulated TOA reflectance 
data including solar geometry, atmospheric variability, and spectral 
signatures to capture complex surface-atmosphere interactions. 
This comprehensive training enabled the models to learn non-
linear relationships between TOA reflectance and LSA across 
diverse conditions. The trained models were validated with real 
OCM-3 satellite data to assess their applicability, and the retrieved 
LSA values were compared with MODIS products to benchmark 
accuracy and reliability.

Error analysis  

To assess the performance of each of these three ML 
models, two commonly used metrics such as - Root Mean Square 
Error (RMSE) and bias were calculated to get insights into the 
model’s accuracy, consistency, and retrieval capability.

The assessment was two stepped: 

Test RMSE: Computed using 30% of the theoretical dataset i.e. 
Test dataset to assess how well the models generalize to unseen 
simulated data.

Validation RMSE and Bias: Calculated by applying the trained 
models to real OCM-3 and MODIS (AOD, WV) observations and 

comparing the estimated LSA values with MODIS LSA products, 
thereby assessing real-world performance. The formulas used are:

                   Bias = LSAe - LSAr                                                                                                                          (4)

	 	 (5)

The above equations involve the following terms: LSAe 

gives the Estimated values by the models, LSAr refers to the 
Reference LSA measurements (whether simulated test samples or 
MODIS measurements), n is the number of observations.    

RESULTS AND DISCUSSION

LSA estimates over varied geographical and environmental 
conditions

	 A two-part analysis was conducted to evaluate the 
accuracy of three ML models (Fig. 2) for estimating LSA. The first 
step involved developing the three models such as RF, XGBoost 
and MLR using 70% samples for training, built on inputs such as 
TOA reflectance, AOD, WV, with solar and viewing geometry. In 

Table 3: Random forest (RF) model specifications

Hyperparameter Search Space Best Value Found
n_estimators [100, 200, 300, 400, 500] 400
max_depth [5, 10, 20, None] None
min_samples_split [2, 5, 10] 3
min_samples_leaf [1, 2, 4] 1
max_features [‘auto’, ‘sqrt’, ‘log2’] ‘sqrt’
bootstrap [True, False] False

Table 4: XGBoost configuration and tuning Parameters

Hyperparameter Search Space Explored Best Value 
Found

n_estimators [100, 200, 300, 500, 700, 1000] 300
learning_rate [0.001, 0.01, 0.05, 0.1, 0.2, 0.3] 0.05
max_depth [3, 4, 5, 6, 8, 10] 10
min_child_weight [1, 3, 5, 7] 1
subsample [0.5, 0.6, 0.7, 0.8, 0.9, 1.0] 1
colsample_bytree [0.5, 0.6, 0.7, 0.8, 0.9, 1.0] 0.5
gamma [0, 0.01, 0.1, 0.3, 0.5] 0
reg_alpha [0, 0.001, 0.01, 0.1, 1, 10] 0
reg_lambda [0.01, 0.1, 0.5, 1, 1.5, 2, 10] 2

Fig. 2: (a) RMSE (×10⁻³) values for three ML models in a bar chart (b) Scatter plot of retrieved versus 6S simulated albedo for three ML models 

Machine learning approaches for Land Surface Albedo (LSA) retrieval using OCM-3 data



459Vol. 27 No. 4

Fig. 3: 	MODIS and ML model-estimated LSA over (a) Gujarat, (b) Rajasthan, (c) Haryana, and (d) Madhya Pradesh for November, along with 
corresponding ML model and MODIS albedo difference histogram

KURESHI et al.



460 December 2025

Fig. 4:	 MODIS and ML model-estimated LSA over (a) Gujarat, (b) Rajasthan, (c) Haryana, and (d) Madhya Pradesh for February, along with 
corresponding ML model and MODIS albedo difference histogram

Machine learning approaches for Land Surface Albedo (LSA) retrieval using OCM-3 data
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the second step, the accuracy of each of these models was assessed 
using the remaining 30% test samples of the theoretical dataset. As 
shown in Fig. 2a, the RF model achieved lowest RMSE (0.360 x 
10-3), depicting higher precision in learning the nonlinear relations 
between the parameters of the theoretical dataset. XGBoost, another 
tree-based model was followed with a slightly higher RMSE (0.810 
x 10-3) while the basic MLR model performed very poorly with 
an RMSE of 7.130 x 10-3, highlighting its limitations due to the 
linearly assumption. Similarly, the scatter plot (Fig. 2b) also shows 
that the estimation made by the tree-based models (RF & XGBoost) 
closely aligns with the 1:1 reference line, whereas the MLR models 
displays noticeable deviations. These findings derived from the 
theoretical dataset confirms that the ensemble-based models like RF 
and XGBoost are more suitable for capturing the complex dynamics 
simulated by the 6S-RTM, laying a reliable foundation for further 
testing the model’s performance for actual observations collected 
from OCM-3 sensor. Therefore, we now proceed to evaluate the 
performance of these three models using the data collected over 
the diverse landforms of India, while also considering temporal 
variability in the measurements.

Spatial and temporal comparisons (Fig. 3 & Fig. 4) 
were carried out using the MODIS-derived LSA across multiple 
regions such as Gujarat (11th February, 01st November), Haryana 
(01st November, 11th February), Rajasthan (11th February, 01st 
November), Madhya Pradesh (20th February, 06st November). In 
Gujarat, the RF model consistently outperformed the remaining two 
models, achieving RMSE values ranging from 0.021 to 0.041 and 
Bias observed to be very close to zero. XGBoost followed closely, 
particularly for December with an RMSE of 0.021 signifying that the 
tree-based models were well-and more effective as compared to the 
simple MLR model which gave higher errors for these conditions.

For Madhya Pradesh, as for 20th February the RF models 
had attained lower RSME values 0.020 with almost negligible 
bias, thereby highlighting the model’s strong performance for 
regions with mixed terrain and land use conditions. Whereas on 
6th November, both RF and XGBoost models maintained more 
accuracy (RMSE: 0.06) indicating that for varying seasonal and 
surface characteristics, the tree-based ensemble models can deliver 
more efficient LSA estimates.  

In Rajasthan, the variances between the models were 
minimal. For instance, for 1st November the two models, RF (0.024), 
and XGBoost (0.027) generated similar results depicting that given 

sufficient feature information, both models can give better accuracy 
for LSA estimation. Similar, the RF model performed better in 
Haryana on 11th February with RMSE of 0.031, although XGBoost 
and MLR models demonstrated comparatively lower performances. 

The regional analysis was conducted to evaluate 
the accuracy of different ML models in estimating LSA over 
diverse landforms, with an aim of assessing the robustness 
and generalizability of these models based on the performance 
indicators such as RMSE to quantify average prediction errors and 
Bias values to reflect the tendency to systematically overestimate or 
underestimate LSA (Table 5).

However, the MLR model consistently showed the lowest 
performance across all regions and time period, with RMSE values 
exceeding 0.3 and reaching as high as 0.555 in Haryana and notably 
higher bias valued as well. These results highlight the limitations 
of linear models in capturing the complex and nonlinear patterns 
present in the observations especially when applied to diverse land 
surfaces.

Overall, the analyses suggest that while RF model 
consistently demonstrate higher accuracy and was found to be well-
suited for capturing complex spatiotemporal patterns, other tree-
based ensemble model like XGBoost also offers reliable estimates. 
Their ability to deliver comparable results, coupled with lower 
computational requirements with the ease of implementation, makes 
them suitable for applications where computational efficiency and 
rapid deployment are essential.

CONCLUSION

This study was undertaken to systematically evaluate 
the ability of multiple machine learning (ML) models to reliably 
estimate clear sky land surface albedo (LSA) across diverse 
landforms over India. Three widely used ML models Random Forest 
(RF), Extreme Gradient Boosting (XGBoost), and Multiple Linear 
Regression (MLR) were trained using synthetic data generated by 
the 6S Radiative Transfer Model (RTM) and validated both on 
simulated test samples and actual satellite observations, including 
MODIS LSA products. The findings indicate that certain ML 
models, particularly RF, are more effective at capturing complex 
patterns in the data, resulting in higher accuracy and lower prediction 
errors. RF not only exhibited the best overall performance across 
varied terrains but also closely matched the MODIS LSA product, 

Table 5: RMSE and bias values for RF, XGBoost, and MLR across different dates over diverse locations.

Location Date RF XGBoost MLR
RMSE Bias RMSE Bias RMSE Bias

Gujarat 11th Feb, 2024 0.041 0.014 0.049 0.024 0.328 0.299
01st Nov, 2024 0.039 0.013 0.049 0.024 0.353 0.321

Haryana 11th Feb, 2024 0.031 0.019 0.050 0.041 0.555 0.533
01st Nov, 2024 0.050 0.004 0.050 0.005 0.186 0.163

Rajasthan 11th Feb, 2024 0.023 0.015 0.038 0.032 0.376 0.357
01st Nov, 2024 0.024 -0.003 0.027 0.013 0.295 0.286

Madhya Pradesh 20th Feb, 2024 0.027 0.021 0.037 0.029 0.400 0.377
06th   Nov, 2024 0.060 0.029 0.059 0.029 0.262 0.246
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thereby demonstrating its strong generalization capabilities. Its 
consistent accuracy when trained on physically based simulations 
underlines its adaptability and strength for geophysical parameter 
retrieval. Although XGBoost gave comparable performance, but 
it consistently trailed Random Forest in estimative accuracy. The 
MLR model, constrained by its assumption of linearity, showed 
comparatively higher errors and limited capability in modelling the 
nonlinear nature of LSA variations across India. In conclusion, this 
study demonstrates the effectiveness of integrating ML algorithms 
with radiative transfer simulations for satellite based LSA estimation. 
The proposed approach offers a promising framework for large scale 
remote sensing applications, providing more accurate and consistent 
LSA retrieval using data from EO sensors like OCM-3.
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