

Short communication

Effect of climate variability on rubber production in Thailand

SIRIKLAO SANGKHAPHAN¹, PAT PATTANARANGSUN^{1*} and SOMSKAOW BEJRANONDA²

¹Faculty of Economics at Sriracha, Kasetsart University, Sriracha Campus, 199 Sukhumvit Rd., Sriracha, Chonburi 20230, Thailand

²Department of Economics, Kasetsart University, 50 Phahonyothin Rd., Chatuchak, Bangkok 10900, Thailand

*Corresponding Author: pat.pa@ku.th

Rising greenhouse gas emissions have intensified global warming and climate change, leading to higher temperatures and irregular rainfall that directly affect agricultural productivity—the sector most vulnerable to climate impacts (Trinh, 2018). Thailand is among the most climate-vulnerable nations (Germanwatch, 2021). Over the past four decades (1981–2020), temperatures have risen substantially, with the northern, northeastern, central, and eastern regions experiencing more rapid warming than the southern region, although there have been no substantial differences in rainfall changes. Current climate variability threatens Thailand's rain-fed agriculture, especially major crops such as rubber, rice, maize, sugarcane, and cassava, with each requiring specific water and temperature conditions that may shift under changing climates (Sdoodee, 2013).

Research studies on climate change and rubber production have been reported from different countries, including Nigeria (Mesike and Esekade, 2014), India (Raj and Dey, 2004), Indonesia (Prasada *et al.*, 2021), and China (Shao-jun *et al.*, 2020). However, published research in Thailand remains limited, with most studies concentrating on the southern region. For example, Thaiburi *et al.*, (2021), using 1989–2019 panel data, reported that both rainfall and temperature had negatively affected yields. Makkaew and Sdoodee (2015) reported that increased rainfall days in Songkhla province had reduced rubber tapping opportunities. Thaiburi (2022) analyzed data from 2010 to 2020 across five southern provinces of Thailand, further confirming that temperature, rainfall, and their variability substantially influenced rubber production. Limsakul and Paengkaew (2014) demonstrated that rubber yield in southern coastal provinces was closely linked to ENSO, with higher yields during El Niño and lower yields during La Niña, reflecting the importance of rainfall intensity and frequency.

The present study investigated the influence of climatic

factors on rubber yields across the three key rubber-cultivation regions (southern, eastern, northeastern) of Thailand. Given the growing disruptions to rainfall patterns caused by climate change, the analysis focused on rainfall variability, with temperature included as a control variable, under the hypothesis that rainfall exerts a stronger influence on rubber yields than temperature. The

Fig. 1: Major rubber cultivation regions in Thailand (orange)

study's findings should provide valuable insights for policymakers in formulating strategies to support farmers and improve water management practices, thereby enhancing the resilience of Thailand's rubber sector to climate variability.

Table 1: Summary of variables by region

Variable	Eastern		Southern		Northeastern	
	Mean	Std Dev.	Mean	Std Dev.	Mean	Std Dev.
Monthly rubber production (tonnes/month)	3,925.2	4,516.7	17,457.7	15,610.0	2,169.0	3,464.2
Monthly rubber tapping area (ha/month)	34,586.8	29,468.7	135,787.8	101,309.4	20,511.1	3,808.7
Monthly average temperature (°C)	28.1	1.3	27.5	1.0	27.2	2.3
Monthly temperature variability (°C ²)	1.6	3.4	1.3	4.4	5.0	15.4
Monthly rainfall variability (mm ²)	232.8	557.6	252.9	488.0	127.8	220.7
Total monthly rainfall (mm)	187.7	232.5	210.0	199.3	121.7	

Table 2: Wald test for heteroscedasticity.

Test	Chi-square statistic	Probability
Wald test	4,526.71***	(0.0000)

The empirical analysis was conducted using panel data obtained from different Thai government organizations between 2005 and 2021 across 40 provinces divided into three regions—eastern (7 provinces), southern (14 provinces), and northeastern (19 provinces)—representing the major rubber cultivation areas of Thailand (Fig. 1). The study design followed the climate-economy framework of Dell *et al.*, (2014), combined with a Cobb-Douglas production function.

The weather data on monthly rainfall and average monthly temperature was collected from the Thai Meteorological Department (2021) for the period of 2005 to 2021. Both the monthly rainfall variability and monthly temperature variability were calculated based on their respective variances, derived from daily observations within each month. The rubber planting area and production data were collected from the Thai Office of Agricultural Economics (2022).

Monthly rainfall and temperature variability were derived from daily observations within each month. Given that the dataset included all daily records (30 or 31 days), each month was treated as a finite population of daily observations and variability was calculated using the population variance formula:

$$\sigma^2 = \frac{1}{m} \sum_{d=1}^m (x_d - \mu)^2$$

where m is the number of days in the month, x_d is the daily observation, and μ is the monthly population mean. As variance is defined as the average of squared deviations from the mean, the resulting units are expressed in squared terms (square millimeters for rainfall, degrees Celsius squared for temperature).

Empirical model

The empirical model developed incorporated rainfall variability as the primary variable of interest. In this analysis, the feasible generalized least squares (FGLS) approach was used to estimate the panel data. The empirical model is presented in Equation (1):

$$\text{Prod}_{it} = \alpha_1 + \beta_1 \text{Area}_{it} + \beta_2 \text{Ta}_{it} + \beta_3 \text{Tv}_{it} + \beta_4 \text{Rt}_{it} + \beta_5 \text{Rv}_{it} + \beta_6 \text{ERV}_{it} + \beta_7 \text{NERV}_{it} + \beta_8 \text{E}_{it} + \beta_9 \text{NE}_{it} + U_{it} \quad (1)$$

where Prod_{it} is the natural logarithm of the total rubber production

per month (in kilograms) and $_{it}$ indicates province at i time t ; Area_{it} is the harvested rubber area (in rai); Ta_{it} is the average temperature per month (in degrees Celsius); Tv_{it} is the monthly temperature variability; Rt_{it} is the total rainfall per month (in millimeters); Rv_{it} is the monthly rainfall variability; ERV_{it} is the monthly rainfall variability in the eastern region (a dummy variable); NERV_{it} is the monthly rainfall variability in the northeastern region (a dummy variable); E_{it} is the monthly rainfall variability in the eastern region (a dummy variable); NE_{it} is the monthly rainfall variability in the northeastern region (a dummy variable); U_{it} is the unobservable error term for province i at time t . The descriptive statistics of the key variables are presented in Table 1.

Panel heteroscedasticity tests were conducted to assess the stationary variance of the error term by applying the Wald test. The null hypothesis was rejected as the model exhibited heteroscedasticity, indicating that the variance of the error terms was not constant (Table 2). To overcome this issue, we used the FGLS estimator, which checks the variables and provides efficient estimates in the presence of heteroscedasticity (Stock and Watson, 2020). Then, in the final step, we developed the model using effective techniques based on the estimation result.

Table 3 presents the effects of climatic factors on rubber production across 40 provinces in Thailand. The analysis revealed that climatic variables were strongly associated with production outcomes, with several variables being significant at the 99% confidence level: rubber tapping area, average temperature, temperature variability, total rainfall, and rainfall variability across the southern, eastern, and northeastern regions. Results revealed that the rubber tapping area had a significantly positive effect on production. The coefficient indicated that an increase of 1,000 ha of tapping area would raise production by 0.215%, consistent with the theory of agricultural supply.

Average temperature exerted a strong negative effect at the 99% confidence level. A 1 °C increase reduced rubber output by 39.8%. Higher temperatures impair rubber tree physiology, leading to leaf drop and reduced latex yield, as also reported by Sdoodee and Rongsawat (2012) and Thaiburi (2022). The temperature variability also had a significantly negative influence. A 1 °C² increase in temperature variability lowered production by 2.10%. This outcome reflects the detrimental role of temperature fluctuations in rubber growth, supporting the findings of Sdoodee and Rongsawat (2012), and Thaiburi (2022), who observed that climate variability disrupts tree physiology, growth, and yield potential, especially in southern Thailand.

Table 3: Rubber production function results for sample of 40 provinces in three regions (2005–2021).

Dependent variable rubber production (ln Prodit)	FGLS	Standard error
Rubber tapping area (thousands ha) (Areait)	0.0134***	0.0004206
Monthly average temperature (°C) (Tait)	-0.398***	0.0152000
Monthly temperature variability (°C ²) (Tvit)	-0.0210***	0.0024400
Total monthly rainfall (100 mm) (Rtit)	0.244***	0.0251000
Monthly rainfall variability (100 mm ²) (Rvit)	-0.0872***	0.0122000
Interaction rainfall with eastern region (Rvit × Eit)	0.0442**	0.0145000
Interaction rainfall with NE region (Rvit × NEit)	0.165***	0.0204000
Eastern: (Eit) ^a	-0.658***	0.0957000
Northeastern: (NEit) ^a	-1.850***	0.0867000
Constant	24.98***	0.4300000
Observations	8,160	
Log likelihood	-18643.18	
Probability (chi-square)	0.0000	

a indicates dummy variables representing regions, with southern region as base case;

** significant at 5%, *** significant at 1%.

Total rainfall had a significantly positive impact on yield. A 100 mm increase was associated with a 24.4% rise in production. This finding is consistent with Chaiyaphet *et al.*, (2015), who showed that rainfall positively influenced production in Nong Khai, Buriram, and Chachoengsao provinces, although negative effects were found in Surat Thani, indicating that rainfall's impact could vary by location.

Rainfall variability across three regions was examined using dummy variables, with the southern region set as the base case. This specification allowed the model to capture and compare the distinct regional effects of rainfall variability on rubber production. In the southern region, a 100 mm² increase in rainfall variability reduced production by 8.72%, consistent with Thaiburi (2022), who linked rainfall fluctuations to disease outbreaks and yield losses. In the eastern region, rainfall variability reduced production by 4.3%, corroborating earlier evidence from Thaiburi (2022) and Sdoodee and Somboonsuke (2015). In contrast, in the northeastern region, rainfall variability positively influenced production, with a 100 mm² increase raising yields by 7.78%. This outcome is consistent with Sangchanda *et al.*, (2014), who reported that higher precipitation enhanced tree girth in northeastern Thailand. In contrast, in the northeast, variability had beneficial effects, as additional rainfall improved growth (Sangchanda *et al.*, 2014).

This study analyzed the effects of rainfall variability on rubber production in Thailand's eastern, southern, and northeastern regions using a Cobb-Douglas production function and FGLS estimation. Based on the results, rainfall variability had negative impacts in the southern and eastern provinces but a positive effect in the northeast. These outcomes underscore the need for region-specific rubber variety development and targeted policy interventions. Future work should incorporate additional climatic indicators such as rainy days, humidity, and seasonal patterns, for a more comprehensive assessment.

ACKNOWLEDGEMENT

The authors are grateful to the Thai Meteorological Department and the Thai Office of Agricultural Economics for

providing the necessary data. The Kasetsart University Research and Development Institute (KURDI), Bangkok, Thailand provided assistance with language editing.

Funding: This research was supported by the Kasetsart University Research and Development Institute (KURDI), Bangkok, Thailand (YF(KU)10.65).

Data availability: The data may be made available on request from the corresponding author.

Conflict of interest: The authors declare no other competing interests.

Authors' contributions: **S. Sangkhaphan:** Conceptualization, literature review, methodology, writing-review and editing; **P. Pattanarangsun:** Methodology, data curation, formal analysis, writing-review and editing, and investigation; **S. Bejranonda:** Supervision.

Disclaimer: The contents, opinions, and views expressed in the research article published in the Journal of Agrometeorology are the views of the authors and do not necessarily reflect the views of the organizations they belong to.

Publisher's Note: The periodical remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

REFERENCES

Chaiyaphet, B.K., Pakoktom, R. and Tiwa, T. (2015). The relationship between meteorological factors and yield of para rubber tree (*Hevea brasiliensis*). Paper presented at the 12th KU-KPS Conference, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand.

Dell, M., Jones, B.F. and Olken, B.A. (2014). What do we learn from the weather? The new climate-economy literature. *J. Econ. Lit.*, 52(3): 740-798. <https://doi.org/10.1257/>

jel.52.3.740

Germanwatch. (2021). Global climate risk index (CRI). Germanwatch. Retrieved from <https://www.germanwatch.org/en/cri>

Limsakul, A. and Paengkaew, W. (2014). Relationship between climate variables and rubber production in the coastal areas of the Gulf of Thailand and the Andaman Sea. *J. Thai Environ. Eng.*, 28(2-3): 67-77.

Makkaew, K.R.K. and Sdoodee, S. (2015). The impact of rainfall fluctuation on days and rubber productivity in Songkhla Province. *J. Agric. Technol.*, 11(1): 181-191.

Mesike, C. and Esekhaide, T. (2014). Rainfall variability and rubber production in Nigeria. *Afr. J. Environ. Sci. Technol.*, 8(1): 54-57. <https://doi.org/10.5897/AJEST2013.1593>

Prasada, I.Y., Dhamira, A. and Nugroho, A.D. (2021). Effects of climatic factors on the productivity of smallholder rubber plantations in South Sumatra, Indonesia. *Reg. Sci. Inquiry*, 13(2): 109-121.

Raj, S. and Dey, S.K. (2004). Spatial analysis of rainfall variability over the northeast with respect to rubber cultivation. *J. Agrometeorol.*, 6 (Special Issue): 52-57.

Sangchanda, N., Ayutthaya, S.I.N., Meetha, S. and Songsri, P. (2014). The influence of rainfall on growth of rubber trees in marginal area of Northeast Thailand. *Adv. Mater. Res.*, 844: 7-10. <https://doi.org/10.4028/www.scientific.net/AMR.844.7>

Sdoodee, S. and Rongsawat, S. (2012). Impact of climate change on smallholders' rubber production in Songkhla Province, southern Thailand. Paper presented at the International and National Conference for the Sustainable Community Development of "Local Community: The Foundation of Development in the ASEAN Economic Community (AEC)", Nakhon Pathom, Thailand.

Sdoodee, S. (2013). The use of double-tapping systems to increase latex yield and reduce dry bark in rubber trees in northeastern Thailand [Research report]. Bangkok, Thailand: Thailand Research Fund Office.

Sdoodee, S. and Somboonsuke, B. (2015). The impact of global warming on rubber production in Songkhla Province (Phase II): Case study of rubber smallholders' adaptation [Research report]. Bangkok, Thailand: Thailand Research Fund.

Shao-jun, L., Jin-he, T., Jing-hong, Z., Xiao-min, C. and Wei-guang, L. (2020). Study on potential productivity of rubber model based on climate data. *Chin. J. Agrometeorol.*, 41(2): 113-120. <https://doi.org/10.3969/j.issn.1000-6362.2020.02.006>

Stock, J.H. and Watson, M.W. (2020). *Introduction to Econometrics*. Pearson. pp. 800.

Thai Meteorological Department. (2021). Daily temperature and precipitation statistics. Bangkok, Thailand: Ministry of Digital Economy and Society.

Thai Office of Agricultural Economics. (2022). Monthly rubber planting area and production data. Bangkok, Thailand: Ministry of Agriculture and Cooperatives.

Thaiburi, N., Sinnarong, N., Autchariyapanitkul, K. and Nunthasen, K. (2021). Impacts of climate change on rubber production in lower southern Thailand. *Princess Naradhiwas Univ. J.*, 13(2): 372-385.

Thaiburi, N. (2022). Impacts of climate change on rubber production in lower southern Thailand. Doctoral dissertation, Maejo University, Chiang Mai, Thailand.

Trinh, T.A. (2018). The impact of climate change on agriculture: Findings from households in Vietnam. *Environ. Resour. Econ.*, 71(4): 897-921. <https://doi.org/10.1007/s10640-017-0189-5>