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ABSTRACT

Accurate wheat yield estimation at the farm scale is crucial for food security, market strategies, trade planning, and storage decisions. Howev-
er, predicting crop production using remote sensing at farm scale presents significant challenges. This research aimed to develop a field-scale
wheat yield prediction model using multi-temporal vegetation indices derived from Sentinel-2 MSI imagery for the rabi seasons of 2018-19 and
2019-20 from Badsu village in Alwar district, Rajasthan. Vegetation indices derived from cloud-free Sentinel-2 images spanning the crop growth
cycle were processed to generate multiple vegetation indices, grouped into greenness, chlorophyll content, and dryness indicators. Spearman’s
rank correlation (p) assessed relationships between indices and wheat yield across various phenological stages and their combinations. Linear
and multiple linear regression (MLR) models were developed using the most significant indices. Findings indicate that Wide Dynamic Range
Vegetation Index (WDRVI), Normalized Green-Red Difference Index (NGRDI), and Normalized Difference Water Index-2 (NDWI2), repre-
senting greenness, chlorophyll, and water stress, respectively, exhibited strong correlations with yield, except during harvesting and crown root
initiation. The best-performing model achieved an RMSE of 0.47 t ha! and an R? of 0.74, demonstrating the effectiveness of remote sensing

indices for precise wheat yield estimation at the field level in diverse agricultural Conditions.
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Early prediction of crop biomass and yield is a corner-
stone of modern agricultural management, playing a vital role in
ensuring food security, optimizing resource use, and supporting eco-
nomic stability. The ability to forecast crop performance at an early
stage allows farmers and policymakers to swiftly address challeng-
es such as pest outbreaks, nutrient shortages, or water stress before
they escalate into significant yield losses. Timely interventions can
make the difference between a successful harvest and crop failure,
emphasizing the value of advanced yield prediction tools (Patel et
al., 2023). Furthermore, precise yield estimation is essential for crop
insurance, enabling both insurers and farmers to make informed de-
cisions about compensation in the event of adverse weather or other
hazards (Van et al., 2020). Early yield forecasts also underpin agri-
cultural early warning systems, guiding farmers in the adoption of
best agronomic practices and supporting national strategies for food
security and rural development (Adedeji et al., 2020).

Remote sensing (RS) has emerged as a transformative
technology for crop monitoring and yield prediction, providing
spatially explicit and timely information on plant health and devel-
opment (Jhajharia, 2025). Over the decades, RS has proven effec-
tive in tracking crop growth, detecting stress, and estimating yield
across large and small areas. Numerous studies have demonstrated
the utility of RS-based frameworks for predicting crop yield and
primary productivity, leveraging data from both multispectral and
hyperspectral sensors (Murthy et al., 2008; Khaki and Wang, 2019;
Patel et al., 2023). Empirical models that use RS-derived vegetation
indices (VIs) have become popular, particularly for yield forecast-
ing. These indices, such as the Normalized Difference Vegetation
Index (NDVI), Enhanced Vegetation Index (EVI), and others, are
calculated from canopy reflectance data and serve as proxies for
key crop attributes like biomass, leaf area, and chlorophyll content
(Misra et al., 2020). The reflectance characteristics of a crop cano-
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py are influenced by its chemical, morphological, and physiological
properties, enabling RS to detect stress and predict yield potential.
Multispectral and hyperspectral remote sensing further enhance the
ability to estimate canopy-level chlorophyll and nitrogen, which are
critical indicators of crop health and yield (Goswami et al., 2021).

Despite these advances, operationalizing RS-based yield
prediction at the field scale remains challenging. Many satellite
platforms, such as MODIS (with 250-meter resolution) or Landsat
(30-60 meters), lack the spatial detail needed to monitor smallhold-
er fields, which are common in countries like India where average
farm size around 1.2 hectares (Elders et al., 2022). High-resolution
data are essential for accurate crop health assessment and yield es-
timation in such contexts. The Copernicus Sentinel-2 mission ad-
dresses this gap by providing freely available imagery at 10-meter
resolution every five days, making it an ideal data for field-scale
agricultural monitoring (Kumar et al., 2022; Lonare et al., 2022,
Sisheber et al., 2024).

In view of these, the study aims to develop a remote sens-
ing-based empirical model for estimating wheat yield at the farm-
scale using Sentinel-2 data, focusing on different vegetation indices
along with multiple crop growth stages. This study will provide
accurate and timely yield estimation information for assisting crop
management and policymakers.

MATERIALS AND METHODS
Study area and data collection

This study was undertaken at Badsu village in Alwar
district, located in the northeastern part of Rajasthan, India (Fig.
1) is characterized by a hot semi-arid climate (Koppen BSh). The
study area lies between 27°13'30" N, 76°55'00"” E and 27°13'00"
N, 76°53"70" E. Two field surveys were conducted to collect the
GPS locations of each crop field using GPS receivers. The spatial
crop maps for wheat were generated using the collected wheat crop
location data of 76 and 95 point for the rabi season of year 2018-19
and 2019-20, respectively are shown in Fig. 2. As per field survey
information, the wheat crop was sown on 15" November and har-
vested on 31* March in all fields.

Satellite data - Sentinel -2 imagery

The Sentinel-2 constellation consists of two optical sat-
ellites, Sentinel-2A and Sentinel-2B, which orbit in a complemen-
tary pattern to shorten the revisit interval from 10 days to 5 days,
thereby significantly improving the frequency of image collection.
Each satellite carries a Multi-Spectral Instrument (MSI) that records
data across 13 spectral bands at different spatial resolutions: four
key bands, B2 (blue), B3 (green), B4 (red), and B8 (near-infrared),
are available at a high resolution of 10 meters, while six additional
bands, including the red-edge (B5, B6, B7, B§A) and short-wave
infrared (B11, B12), are provided at 20 meters, and the remain-
ing three bands Bl (coastal aerosol), B9 (water vapor), and B10
(SWIR-cirrus) are captured at 60-meter resolution. In this study, sur-
face reflectance products with less than 10% cloud cover were ob-
tained from the ESA Copernicus Open Access Hub (https://browser.
dataspace.copernicus.eu), wheat growing seasons (November 15%
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to March 31%) for the years 2018-2019 and 2019-2020. To ensure
consistency in spatial resolution, the 20-meter red-edge and short-
wave infrared bands were resampled to 10 meters using the nearest
neighbour interpolation technique, aligning all relevant bands for
accurate and uniform analysis.

Vegetation indices

Seventeen vegetation indices were computed from Senti-
nel-2 MSI (Table 1). The reflectance bands, i.e., visible, red-edge,
near-infrared (NIR), and short-wave infrared (SWIR) bands, were
considered for the computation of these vegetation indices. The
selected indices represent three fundamental crop health parame-
ters: greenness, chlorophyll content, and dryness. Greenness indi-
ces serve as robust indicators of crop biomass, with the presence
of green vegetation strongly captured by indices that combine red
and NIR spectral data. In the study, Normalized Difference Vegeta-
tion Index (NDVI), Transformed Normalized Difference Vegetation
Index (TNDVI), Wide Dynamic Range Vegetation Index (WDR-
VI), and Soil Adjusted Vegetation Index (SAVI) were considered
as presentations of greenness. The second group of indices focuses
on chlorophyll or nitrogen content, which is closely tied to plant
photosynthetic efficiency and fertilization status. Since chlorophyll
pigments in leaves influence the reflectance of light in visible and
red-edge spectral regions, therefore, Chlorophyll Index Red-edge
(CIR), Normalized Green Red Difference Index (NGRDI), Nor-
malized Difference Red Edge (NDRE), and Chlorophyll Vegetation
Index (CVI) were selected to monitor these traits. The third param-
eter dryness, reflects water stress within crops. Dryness indices are
based on the principle that water-stressed plants reduce stomatal
opening, leading to altered canopy characteristics and elevated leaf
temperatures; the Normalized Difference Water Index (NDWI) and
Vegetation Condition Index (VCI) were applied to quantify these
conditions. Collectively, these indices provide a comprehensive
framework for evaluating wheat health and yield potential at the
field scale.

Phenological stages

In this study, seven phenological stages of wheat, crown
root initiation (CRI), tillering, jointing, booting, milking, dough, and
harvesting were considered to assess the performance of vegetation
indices (Kumar et al., 2018). For each stage, the average value of each
vegetation index (VI) was computed per plot. Since crop yield is
influenced not only by a single growth stage but also by conditions
throughout the entire growing period, so for that combinations of
multiple growth stages were generated (Table 2), and corresponding
index values were calculated to capture their cumulative effects.

Sensitivity analysis of vegetation indices (VIs)

The sensitivity analysis of various RS-derived VIs and
observed yield with respective growth stages of the crop was an-
alysed using Spearman’s rank correlation coefficient (p). This
non-parametric method was selected for its ability to capture mono-
tonic relationships without assuming data normality. The strength of
association was interpreted based on the absolute value of p, where
values near +1 indicate a strong correlation, whereas values near 0
indicate weak or no association (Xiao, 2019).
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Fig. 1: Location map of Badsu village, Alwar, Rajasthan
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Fig. 2: Wheat crop observation location during (a) 2018-19 and (b) 2019-20

Table 1: Different vegetation index (VIs) used in this study

27°1330N

409

S. No. Index Expression Reference

1 NDVI (NIR- RED)/(NIR+ RED) Benedetti and Rossini (1993)
2 TNDVI SQRT((NIR-RED)/(NIR+RED) +0.5) Tucker (1979)

3 WDRVI (a * NIR- RED)/(a * NIR+ RED) Gitelson (2004)

4 SAVI (1+L) * (NIR- RED)/(NIR+ RED +L) Huete (1988)

5 CIR1 (NIR/RE1)-1

6 CIR2 (NIR/RE2)-1 Gitelson et al., (2003)

7 CIR3 (NIR/RE3)-1

8 CIR4 (NIR/RE4)-1

9 NDRE1 (NIR-RE1)/(NIR+RE1)

10 NDRE2 (NIR-RE2)/(NIR+RE2) Gitelson and Merzlyak (1994)
11 NDRE3 (NIR-RE3)/(NIR+RE3)

12 NDRE4 (NIR-RE4)/(NIR+RE4)

13 NGRDI (GREEN - RED)/ (GREEN + RED)

14 CVI (NIR/GREEN) *(RED/GREEN)

15 VCI 100*(NDVI-NDVImin) / (NDVImax - NDVImin) Hayes and Decker (1996)

16 NDWI1 (NIR — SWIR1)/(NIR+SWIR1) Bolton and Friedl (2013)

17 NDWI2 (NIR — SWIR2)/(NIR+SWIR2)
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Table 2: Combination of growth stages used in the study

December 2025

S.No. Name of Assigned Combination

Description of Combination

1 Avg all

Except CRI
Except_harvesting
Except_har_cri

Except cri_till harve
Except_cri_till_join_harve
Only_milk_dou

Only booting milk

O 0 9 N U kW

Only_joint_boot

[

Only_joint_boot_milk

Taking average of indices of all seven growth stages

Average of indices of Tillering, Jointing, Booting, Milk, Dough and Harvesting growth stage
Average of indices of CRI, Tillering, Jointing, Booting, Milk and Dough growth stage
Average of indices of Tillering, Jointing, Booting, Milk and Dough growth stage

Average of indices of Jointing, Booting, Milk and Dough growth stage

Average of indices of Booting, Milk and Dough growth stage

Average of indices of Milk and Dough growth stage

Average of indices of Booting and Milk growth stage

Average of indices of Jointing and Booting growth stage

Average of indices of Jointing, Booting and Milk growth stage

6zd?
nn2-1)

p=1-

Where df = R(Xi) — R (Yi), is the difference between the two ranks
of each sample; Xi is the remote sensing-derived VIs, Yi indicates
observed crop yield at different growth stage periods, and n is the
number of samples.

Development of empirical models for crop yield prediction

The empirical models have been developed based on the
RS-derived VIs that describe plant growth characteristics, including
greenness, chlorophyll, and dryness. The present study hypothesiz-
es that crop yield is a function of remote sensing-derived VIs with
time-scale. To test this, an initial set of 17 VIs was evaluated for
correlation with observed wheat yield (t ha') during the Rabi season
for the year 2018-19. Spearman’s rank correlation was used to iden-
tify sensitive VIs for crop yield prediction. VIs that exhibits strong
and statistically significant correlations were selected for model de-
velopment.

Using these selected VlIs, both linear and multiple linear
regression models were developed using curve-fitting techniques in
Python environment. In the developed model, crop yield (t ha') was
considered as the dependent variable, while remote sensing-derived
VIs were taken as independent variables. The developed regression
models, i.e., linear, polynomial, exponential, and quadratic, are
shown in Table 3. The model’s accuracy was evaluated by compar-
ing the predicted yield with the observed yield values of the wheat

crop.
Model performance evaluation

The performance of the developed models was evaluat-
ed using standard statistical metrics, i.e., Root Mean Square Error
(RMSE), Coefficient of Determination (R?), and Mean Absolute Er-
ror (MAE). These metrics were calculated by comparing observed
yields against model-simulated yields, enabling selection of the
most robust prediction model.

RESULTS AND DISCUSSION
Relation between VIs, crop growth stage and crop yield

The relationship between observed wheat yield and 17 VIs
was examined across various growth stages using Spearman’s rank
correlation coefficient for the Rabi season (November to March) of
the year 2018-19. The Spearman’s rank correlation coefficient is
presented using a heatmap (Fig. 3) illustrating how remote sens-
ing-based VIs relate to yield with respect to various growth stages.
Generally, the predictive strength of VIs varied significantly with
growth stage, showing stronger correlations during mid to late phe-
nological phases. Among four greenness indices, the WDRVI con-
sistently exhibited a strong correlation with yield (p = 0.79), during
the composite “only joint boot milk” stage, revealing its effective-
ness in capturing biomass and canopy cover. The NDWI2 showed
the highest correlation (p = 0.8) as stress indices, particularly during
the composite stage “Except_har CRI”, indicating its sensitivity to
plant water content and drought stress. Within chlorophyll or nitro-
gen-related indices, the NGRDI emerged as the most reliable and
sensitive (p = 0.79), at the same composite “only joint boot milk”
stage, highlighting its usefulness in detecting crop nutrient status.
Opverall, these findings emphasize the importance of selecting both
the appropriate VIs and the optimal crop growth stage to enhance
yield prediction accuracy. Indices such as WDRVI, NDWI2, and
NGRDI, especially when derived from data spanning the jointing
to milky stages, provide robust indicators of biomass accumulation,
physiological health, and nutrient availability, making them reliable
remote sensing-based VIs for wheat yield estimation and crop mon-
itoring strategies.

Performance of crop yield models

Multiple crop yield models were developed using linear
and multiple linear regression models based on selected Vls, i.e.,
WDRVI, NGRDI, and NDWI2, using polynomial curve fitting in a
Python environment. Eight different models, including linear, qua-
dratic, cubic, logarithmic, and exponential forms were tested. The
performance metrics of models are presented in Table 4. The perfor-
mance statistics revealed that for all three indices (WDRVI, NGRDI,
and NDW12), the M6 model (Third order polynomial) showed the
highest R?>and lower error (RMSE and MAE). For WDRVI-based
derived models, the M6 model has the lowest RMSE and MAE,
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Table 3: Different equations used in this study
Model number  Model name Expression
(Prz — Prl)
M1 Boltzmann sigmoidal Y=Put— (.0
l1+e Pr
-P,
M2 Gaussian Y= P, x e‘o-s(xp_r;z)z
Y = Py
M3 Lorentzian 14 (X P,,z) 2
M4 First Order Y=P,+P,%XX
M5 Second Order Y=Pq+P,XX+PsgXxX?
M6 Third Order Y=Py+PyXX+P3XX?+ PyXX3
y=rp Py = Prq
M7 Sigmoidal dose-response (Slope variable) =P+ Prs—X
1+ 10 Pra
M8 Sigmoidal dose-response Y=P,4+ M
™14 10PeX

Where X — independent variable, Y — dependent variable, and Pr

CIR2  CIR1

CIR3

NGRDI NDRF4 NDRE3 NDRE2 NDRE1 CIR4A
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Fig. 3: Heatmap of Spearman’s rank coefficient between VIs and crop yield to the growth stage of the wheat crop

with values of 0.43 and 0.34, respectively, and the highest R? of
0.64, which confirms its strength in capturing canopy biomass and
greenness related to crop productivity. In the NGRDI-based models,

the M6 model portrays the lowest RMSE and MAE of 0.40 and
0.32, respectively, and R?0of 0.69, demonstrating its ability to cap-
ture chlorophyll content and nitrogen-related physiological traits.
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Table 4: Statistical parameters of different models for WDRVI, NGRDI, and NDWI2
Model WDRVI NGRDI NDWI2
RMSE R? MAE RMSE R? MAE RMSE R? MAE
M1 0.44 0.63 0.35 0.40 0.68 0.32 0.39 0.70 0.32
M2 0.44 0.63 0.35 0.41 0.68 0.32 0.39 0.70 0.32
M3 0.44 0.63 0.35 0.41 0.68 0.32 0.39 0.70 0.32
M4 0.44 0.63 0.34 0.40 0.68 0.32 0.39 0.70 0.32
M5 0.44 0.63 0.35 0.40 0.68 0.32 0.39 0.70 0.32
M6 0.43 0.64 0.34 0.40 0.69 0.32 0.39 0.70 0.32
M7 0.44 0.63 0.35 0.40 0.68 0.32 0.39 0.70 0.32
M8 0.44 0.63 0.35 0.40 0.68 0.32 0.39 0.70 0.32

Table 5: Different multivariate models developed based on the M6 model combination

Models Equations RMSE R? MAE
All indices Y=A+Bxp+Cxp?+Dxp3+Exq+Fxq?+G x>+ Hxr+Ixr2+J x> 0.37  0.74 030
Without cube Y=A+Bxp+Cxp?+Dxq+Exq*+Fxr+Gxr? 038 072 031

Without square Y=A+Bxp+Cxp3+Dxq+Exq3+F xr+Gxr?
Without linear

Only linear Y=A+Bxp+Cxg+Dxr

Only square Y=A+Bxp?+Cxg?+Dxr?

Only cube Y=A+Bxp3+Cxg3+Dxr3

Multiplyl Y=A+Bxq+Cxgxr+DXpxgxr+Exp"2
Multiply2 Y=A+Bxp+Cxq+Dxr+Exgxr+Fxqxp+Gxpxr

Y=A+Bxp?>+Cxp>+D xg>+Exq3+F x12+G x13

0.38 0.72 0.31
0.39 0.72 0.32
0.39 0.71 0.32
0.40 0.70 0.32
0.40 0.69 0.32
0.40 0.70 0.32
0.38 0.72 0.31

Here Y = Crop yield (t ha!), p= WDRVI only joint boot milk, q=NGRDI only joint boot milk, and r=NDWI2_except har cri

The moderate R? and relatively low RMSE and MAE values indi-
cate reliable predictive capability. Similarly, for the NDWI2-based
derived model, the M6 model showed RMSE and MAE of 0.39 and
0.32, with R? of 0.70, which reflects the sensitivity of this index
to canopy water content and crop water stress. Its strong correla-
tion with yield is likely due to the influence of water availability on
grain filling and biomass accumulation. A high R? and low RMSE
suggest that NDWI2 effectively captures water-related stress factors
influencing final yield, especially in semi-arid or variable rainfall
regions.

Further, multivariate models were developed using the
integration of three selected vegetation indices, WDRVI (greenness
index), NGRDI (chlorophyll index), and NDWI2 (dryness index),
that reflect key physiological and environmental factors affecting
crop productivity. Based on the M6 (third-order polynomial) mod-
el, multiple combinations of multivariate models were generated
as shown in Table 5. These combinations include, (a) All indices:
This combination incorporates all parameters from the third-order
polynomial equation for each index; (b) Without cube parameters:
This combination excludes the cube parameters from the third-order
polynomial equation; (c) Without square parameters: This combina-
tion excludes the square parameters, while retaining the linear and
cubic parameters; (d) Without linear parameters: This combination
excludes the linear parameters, while keeping only the square and
cubic parameters; (¢) Only linear, square, and cubic parameters:
Each combination includes only the linear, square, or cubic parame-
ters from all indices, respectively; (f) Multiplicative index combina-
tions: In this combination, indices are multiplied together.

The results of the multivariate models showed that mod-
els incorporating all third-order parameters (all indices), without the
cube parameter, without square parameters, and the multiplicative
index combination performed better in estimating yield using the
three indices. When all three VIs were incorporated in the multi-
variate model development, the RMSE decreased by up to 0.37 t
ha!, and R? increased to 0.74. Based on RMSE, R2, and MSE, the
four models (all cubic, without Cube, without square, and the mul-
tiplicative index combination) were further used to estimate wheat
yield for the Rabi season of year 2019-20. These combinations were
tested to evaluate whether incorporating different mathematical re-
lationships among the indices improves model performance or not,
ultimately aiming to develop a robust multivariate yield prediction
model.

Validation of models

The developed multivariate models were validated using
observed wheat yield data for the Rabi season of year 2019-20. The
comparison of different Models shows that the third-order polyno-
mial-based (all_indices) combination model predicted yield with
+10% deviation from the 1:1 line, indicating a good agreement
between observed and simulated crop yield (Fig. 4 and Table 6).
Whereas, other models predicted yield showed over-prediction or
under-prediction within the £10% deviation. These patterns high-
light the importance of including third-order polynomial compo-
nents for reliable yield estimation at the field scale.

Among all tested combinations, the model incorporating
all third-order polynomial forms (All index) of selected indices, i.e.,
WDRVI, NGRDI, and NDWI2, exhibited the highest accuracy, with



Vol. 27 No. 4 CHOUDHARY and JAT 413
Table 6: Validation results of developed multivariate models

Models Equations RMSE R? MAE
All index Y=A+Bxp+Cxp>+Dxp3+Exq+F*xq*+G x> +Hxr+Ixr?+Jxr3 0.47 0.74 0.37
Without cube Y=A+Bxp+Cxp?+Dxq+Exq*+Fxr+Gxr? 0.58 0.71 0.45
Without square Y=A+Bxp+Cxp3+Dxq+Exq3+F xr+Gxi3 0.58 0.70 0.44
Multiply2 Y=A+BXp+Cxq+Dxr+EXqxr+Fxqxp+GXxpxr 0.59 0.70 0.46

All index

yield {ton/ha)

Simulated

Without Cube

. v

yheld (ton/h

simulated

Without Square

; Yo’

d yield (ton/ha)
L)

imulat

\ e

"
\

i

yield {ton/hs

Simulated

Fig. 4 : Observed versus simulated yield for model validation; (a) for all index based model; (b) for without cube-based model; (c) for without

square based model; (d) for multiply2 based model
R? of 0.74 and RMSE of 0.47 t ha'! (Fig. 4). This model outper-
formed as compared to other combinations, i.e., without cube, with-
out square, and the multiplicative index model. It demonstrates the
effectiveness of capturing non-linear relations among corresponding
VIs that represent canopy greenness, chlorophyll content, and crop
dryness conditions.

Unlike other studies, such as Du et al.,, (2025) demon-
strated the performance of the yield prediction model with R? values
between 0.57-0.6 and RMSE of 0.42—0.58, using dense time-series
data, crop model, and machine learning algorithms. However, the
developed multivariate model in this study offers a simpler and
more interpretable polynomial framework that still achieves a ro-
bust accuracy. In addition, consideration of important physiological
stages (tillering, jointing, booting, milking, dough), excluding CRI
and harvesting, improves the model’s yield prediction accuracy by
avoiding noise from less informative periods.

CONCLUSIONS

This study demonstrates that wheat yield can be accurate-
ly estimated at the farm scale in semi-arid regions by integrating
Sentinel-2 satellite data-derived VIs such as WDRVI, NGRDI, and
NDWI2 in a multivariate model. The results of the study depicted
that consideration of VIs at critical phenological stages, particularly
“only_joint boot milk” and “except_har cri” are most informative
for yield estimation modelling. The developed univariate polynomi-
al models showed strong predictive performance with WDRVI (R?

=0.64), NGRDI (R?>=0.69), and NDWI2 (R?=0.70), while a multi-
variate polynomial model further improved prediction accuracy (R?
= 0.74). Furthermore, comparison of observed yield and simulated
yield during the validation shows the robustness (R? = 0.74) of the
developed multivariate model. The findings have significant practi-
cal implications, providing a cost-effective and scalable framework
for field-scale yield forecasting in smallholder agricultural systems.
This research offers a transparent and reproducible toolset that can
be adopted by policymakers, agricultural extension agencies, and
farmer collectives to improve data-driven decision-making and pro-
mote sustainable wheat production.
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