
Early prediction of crop biomass and yield is a corner-
stone of modern agricultural management, playing a vital role in 
ensuring food security, optimizing resource use, and supporting eco-
nomic stability. The ability to forecast crop performance at an early 
stage allows farmers and policymakers to swiftly address challeng-
es such as pest outbreaks, nutrient shortages, or water stress before 
they escalate into significant yield losses. Timely interventions can 
make the difference between a successful harvest and crop failure, 
emphasizing the value of advanced yield prediction tools (Patel et 
al., 2023). Furthermore, precise yield estimation is essential for crop 
insurance, enabling both insurers and farmers to make informed de-
cisions about compensation in the event of adverse weather or other 
hazards (Van et al., 2020). Early yield forecasts also underpin agri-
cultural early warning systems, guiding farmers in the adoption of 
best agronomic practices and supporting national strategies for food 
security and rural development (Adedeji et al., 2020). 

Remote sensing (RS) has emerged as a transformative 
technology for crop monitoring and yield prediction, providing 
spatially explicit and timely information on plant health and devel-
opment (Jhajharia, 2025). Over the decades, RS has proven effec-
tive in tracking crop growth, detecting stress, and estimating yield 
across large and small areas. Numerous studies have demonstrated 
the utility of RS-based frameworks for predicting crop yield and 
primary productivity, leveraging data from both multispectral and 
hyperspectral sensors (Murthy et al., 2008; Khaki and Wang, 2019; 
Patel et al., 2023). Empirical models that use RS-derived vegetation 
indices (VIs) have become popular, particularly for yield forecast-
ing. These indices, such as the Normalized Difference Vegetation 
Index (NDVI), Enhanced Vegetation Index (EVI), and others, are 
calculated from canopy reflectance data and serve as proxies for 
key crop attributes like biomass, leaf area, and chlorophyll content 
(Misra et al., 2020). The reflectance characteristics of a crop cano-
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Accurate wheat yield estimation at the farm scale is crucial for food security, market strategies, trade planning, and storage decisions. Howev-
er, predicting crop production using remote sensing at farm scale presents significant challenges. This research aimed to develop a field-scale 
wheat yield prediction model using multi-temporal vegetation indices derived from Sentinel-2 MSI imagery for the rabi seasons of 2018–19 and 
2019–20 from Badsu village in Alwar district, Rajasthan. Vegetation indices derived from cloud-free Sentinel-2 images spanning the crop growth 
cycle were processed to generate multiple vegetation indices, grouped into greenness, chlorophyll content, and dryness indicators. Spearman’s 
rank correlation (ρ) assessed relationships between indices and wheat yield across various phenological stages and their combinations. Linear 
and multiple linear regression (MLR) models were developed using the most significant indices. Findings indicate that Wide Dynamic Range 
Vegetation Index (WDRVI), Normalized Green-Red Difference Index (NGRDI), and Normalized Difference Water Index-2 (NDWI2), repre-
senting greenness, chlorophyll, and water stress, respectively, exhibited strong correlations with yield, except during harvesting and crown root 
initiation. The best-performing model achieved an RMSE of 0.47 t ha-1 and an R² of 0.74, demonstrating the effectiveness of remote sensing 
indices for precise wheat yield estimation at the field level in diverse agricultural Conditions. 
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py are influenced by its chemical, morphological, and physiological 
properties, enabling RS to detect stress and predict yield potential. 
Multispectral and hyperspectral remote sensing further enhance the 
ability to estimate canopy-level chlorophyll and nitrogen, which are 
critical indicators of crop health and yield (Goswami et al., 2021).

Despite these advances, operationalizing RS-based yield 
prediction at the field scale remains challenging. Many satellite 
platforms, such as MODIS (with 250-meter resolution) or Landsat 
(30–60 meters), lack the spatial detail needed to monitor smallhold-
er fields, which are common in countries like India where average 
farm size around 1.2 hectares (Elders et al., 2022). High-resolution 
data are essential for accurate crop health assessment and yield es-
timation in such contexts. The Copernicus Sentinel-2 mission ad-
dresses this gap by providing freely available imagery at 10-meter 
resolution every five days, making it an ideal data for field-scale 
agricultural monitoring (Kumar et al., 2022; Lonare et al., 2022; 
Sisheber et al., 2024).

In view of these, the study aims to develop a remote sens-
ing-based empirical model for estimating wheat yield at the farm-
scale using Sentinel-2 data, focusing on different vegetation indices 
along with multiple crop growth stages. This study will provide 
accurate and timely yield estimation information for assisting crop 
management and policymakers. 

MATERIALS AND METHODS

Study area and data collection

This study was undertaken at Badsu village in Alwar 
district, located in the northeastern part of Rajasthan, India (Fig. 
1) is characterized by a hot semi-arid climate (Köppen BSh). The 
study area lies between 27°13′30″ N, 76°55′00″ E and 27°13′00″ 
N, 76°53′70″ E.  Two field surveys were conducted to collect the 
GPS locations of each crop field using GPS receivers. The spatial 
crop maps for wheat were generated using the collected wheat crop 
location data of 76 and 95 point for the rabi season of year 2018-19 
and 2019-20, respectively are shown in Fig. 2. As per field survey 
information, the wheat crop was sown on 15th November and har-
vested on 31st March in all fields. 

Satellite data - Sentinel -2 imagery 

The Sentinel-2 constellation consists of two optical sat-
ellites, Sentinel-2A and Sentinel-2B, which orbit in a complemen-
tary pattern to shorten the revisit interval from 10 days to 5 days, 
thereby significantly improving the frequency of image collection. 
Each satellite carries a Multi-Spectral Instrument (MSI) that records 
data across 13 spectral bands at different spatial resolutions: four 
key bands, B2 (blue), B3 (green), B4 (red), and B8 (near-infrared), 
are available at a high resolution of 10 meters, while six additional 
bands, including the red-edge (B5, B6, B7, B8A) and short-wave 
infrared (B11, B12), are provided at 20 meters, and the remain-
ing three bands B1 (coastal aerosol), B9 (water vapor), and B10 
(SWIR-cirrus) are captured at 60-meter resolution. In this study, sur-
face reflectance products with less than 10% cloud cover were ob-
tained from the ESA Copernicus Open Access Hub (https://browser.
dataspace.copernicus.eu), wheat growing seasons (November 15th 

to March 31st) for the years 2018–2019 and 2019–2020. To ensure 
consistency in spatial resolution, the 20-meter red-edge and short-
wave infrared bands were resampled to 10 meters using the nearest 
neighbour interpolation technique, aligning all relevant bands for 
accurate and uniform analysis.

Vegetation indices 

Seventeen vegetation indices were computed from Senti-
nel-2 MSI (Table 1). The reflectance bands, i.e., visible, red-edge, 
near-infrared (NIR), and short-wave infrared (SWIR) bands, were 
considered for the computation of these vegetation indices. The 
selected indices represent three fundamental crop health parame-
ters: greenness, chlorophyll content, and dryness. Greenness indi-
ces serve as robust indicators of crop biomass, with the presence 
of green vegetation strongly captured by indices that combine red 
and NIR spectral data. In the study, Normalized Difference Vegeta-
tion Index (NDVI), Transformed Normalized Difference Vegetation 
Index (TNDVI), Wide Dynamic Range Vegetation Index (WDR-
VI), and Soil Adjusted Vegetation Index (SAVI) were considered 
as presentations of greenness. The second group of indices focuses 
on chlorophyll or nitrogen content, which is closely tied to plant 
photosynthetic efficiency and fertilization status. Since chlorophyll 
pigments in leaves influence the reflectance of light in visible and 
red-edge spectral regions, therefore, Chlorophyll Index Red-edge 
(CIR), Normalized Green Red Difference Index (NGRDI), Nor-
malized Difference Red Edge (NDRE), and Chlorophyll Vegetation 
Index (CVI) were selected to monitor these traits. The third param-
eter dryness, reflects water stress within crops. Dryness indices are 
based on the principle that water-stressed plants reduce stomatal 
opening, leading to altered canopy characteristics and elevated leaf 
temperatures; the Normalized Difference Water Index (NDWI) and 
Vegetation Condition Index (VCI) were applied to quantify these 
conditions. Collectively, these indices provide a comprehensive 
framework for evaluating wheat health and yield potential at the 
field scale.

Phenological stages 

In this study, seven phenological stages of wheat, crown 
root initiation (CRI), tillering, jointing, booting, milking, dough, and 
harvesting were considered to assess the performance of vegetation 
indices (Kumar et al., 2018). For each stage, the average value of each 
vegetation index (VI) was computed per plot. Since crop yield is 
influenced not only by a single growth stage but also by conditions 
throughout the entire growing period, so for that combinations of 
multiple growth stages were generated (Table 2), and corresponding 
index values were calculated to capture their cumulative effects.

Sensitivity analysis of vegetation indices (VIs)

The sensitivity analysis of various RS-derived VIs and 
observed yield with respective growth stages of the crop was an-
alysed using Spearman’s rank correlation coefficient (ρ). This 
non-parametric method was selected for its ability to capture mono-
tonic relationships without assuming data normality. The strength of 
association was interpreted based on the absolute value of ρ, where 
values near ±1 indicate a strong correlation, whereas values near 0 
indicate weak or no association (Xiao, 2019).
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Fig. 1: Location map of Badsu village, Alwar, Rajasthan

Table 1: Different vegetation index (VIs) used in this study

S. No. Index Expression Reference
1 NDVI (NIR- RED)/(NIR+ RED) Benedetti and Rossini (1993)
2 TNDVI SQRT((NIR-RED)/(NIR+RED) +0.5) Tucker (1979)
3 WDRVI (a * NIR- RED)/(a * NIR+ RED) Gitelson (2004)
4 SAVI (1+L) * (NIR- RED)/(NIR+ RED +L) Huete (1988)
5 CIR1 (NIR/RE1)-1

Gitelson et al., (2003)6 CIR2 (NIR/RE2)-1
7 CIR3 (NIR/RE3)-1
8 CIR4 (NIR/RE4)-1
9 NDRE1 (NIR-RE1)/(NIR+RE1)

Gitelson and Merzlyak (1994)10 NDRE2 (NIR-RE2)/(NIR+RE2)
11 NDRE3 (NIR-RE3)/(NIR+RE3)
12 NDRE4 (NIR-RE4)/(NIR+RE4)
13 NGRDI (GREEN – RED)/ (GREEN + RED)
14 CVI (NIR/GREEN) *(RED/GREEN)
15 VCI 100*(NDVI-NDVImin) / (NDVImax - NDVImin) Hayes and Decker (1996)
16 NDWI1 (NIR – SWIR1)/(NIR+SWIR1) Bolton and Friedl (2013)
17 NDWI2 (NIR – SWIR2)/(NIR+SWIR2)

Fig. 2: Wheat crop observation location during (a) 2018-19 and (b) 2019-20
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Where di
2 = R(Xi) – R (Yi), is the difference between the two ranks 

of each sample; Xi is the remote sensing-derived VIs, Yi indicates 
observed crop yield at different growth stage periods, and n is the 
number of samples. 

Development of empirical models for crop yield prediction 

The empirical models have been developed based on the 
RS-derived VIs that describe plant growth characteristics, including 
greenness, chlorophyll, and dryness. The present study hypothesiz-
es that crop yield is a function of remote sensing-derived VIs with 
time-scale. To test this, an initial set of 17 VIs was evaluated for 
correlation with observed wheat yield (t ha-1) during the Rabi season 
for the year 2018-19. Spearman’s rank correlation was used to iden-
tify sensitive VIs for crop yield prediction. VIs that exhibits strong 
and statistically significant correlations were selected for model de-
velopment.

Using these selected VIs, both linear and multiple linear 
regression models were developed using curve-fitting techniques in 
Python environment. In the developed model, crop yield (t ha-1) was 
considered as the dependent variable, while remote sensing-derived 
VIs were taken as independent variables. The developed regression 
models, i.e., linear, polynomial, exponential, and quadratic, are 
shown in Table 3. The model’s accuracy was evaluated by compar-
ing the predicted yield with the observed yield values of the wheat 
crop.

Model performance evaluation

The performance of the developed models was evaluat-
ed using standard statistical metrics, i.e., Root Mean Square Error 
(RMSE), Coefficient of Determination (R²), and Mean Absolute Er-
ror (MAE). These metrics were calculated by comparing observed 
yields against model-simulated yields, enabling selection of the 
most robust prediction model. 

RESULTS AND DISCUSSION

Relation between VIs, crop growth stage and crop yield

The relationship between observed wheat yield and 17 VIs 
was examined across various growth stages using Spearman’s rank 
correlation coefficient for the Rabi season (November to March) of 
the year 2018–19. The Spearman’s rank correlation coefficient is 
presented using a heatmap (Fig. 3) illustrating how remote sens-
ing-based VIs relate to yield with respect to various growth stages. 
Generally, the predictive strength of VIs varied significantly with 
growth stage, showing stronger correlations during mid to late phe-
nological phases. Among four greenness indices, the WDRVI con-
sistently exhibited a strong correlation with yield (ρ = 0.79), during 
the composite “only_joint_boot_milk” stage, revealing its effective-
ness in capturing biomass and canopy cover. The NDWI2 showed 
the highest correlation (ρ = 0.8) as stress indices, particularly during 
the composite stage “Except_har_CRI”, indicating its sensitivity to 
plant water content and drought stress. Within chlorophyll or nitro-
gen-related indices, the NGRDI emerged as the most reliable and 
sensitive (ρ = 0.79), at the same composite “only_joint_boot_milk” 
stage, highlighting its usefulness in detecting crop nutrient status. 
Overall, these findings emphasize the importance of selecting both 
the appropriate VIs and the optimal crop growth stage to enhance 
yield prediction accuracy. Indices such as WDRVI, NDWI2, and 
NGRDI, especially when derived from data spanning the jointing 
to milky stages, provide robust indicators of biomass accumulation, 
physiological health, and nutrient availability, making them reliable 
remote sensing-based VIs for wheat yield estimation and crop mon-
itoring strategies. 

Performance of crop yield models 

Multiple crop yield models were developed using linear 
and multiple linear regression models based on selected VIs, i.e., 
WDRVI, NGRDI, and NDWI2, using polynomial curve fitting in a 
Python environment. Eight different models, including linear, qua-
dratic, cubic, logarithmic, and exponential forms were tested. The 
performance metrics of models are presented in Table 4.  The perfor-
mance statistics revealed that for all three indices (WDRVI, NGRDI, 
and NDWI2), the M6 model (Third order polynomial) showed the 
highest R2 and lower error (RMSE and MAE). For WDRVI-based 
derived models, the M6 model has the lowest RMSE and MAE, 

Table 2: Combination of growth stages used in the study

S. No. Name of Assigned Combination Description of Combination
1 Avg_all Taking average of indices of all seven growth stages
2 Except_CRI Average of indices of Tillering, Jointing, Booting, Milk, Dough and Harvesting growth stage
3 Except_harvesting Average of indices of CRI, Tillering, Jointing, Booting, Milk and Dough growth stage
4 Except_har_cri Average of indices of Tillering, Jointing, Booting, Milk and Dough growth stage
5 Except_cri_till_harve Average of indices of Jointing, Booting, Milk and Dough growth stage
6 Except_cri_till_join_harve Average of indices of Booting, Milk and Dough growth stage
7 Only_milk_dou Average of indices of Milk and Dough growth stage
8 Only_booting_milk Average of indices of Booting and Milk growth stage
9 Only_joint_boot Average of indices of Jointing and Booting growth stage
10 Only_joint_boot_milk Average of indices of Jointing, Booting and Milk growth stage

Remote sensing-based yield estimation of wheat crop at farm scale
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Table 3: Different equations used in this study 

Model number Model name Expression

M1 Boltzmann sigmoidal

M2 Gaussian

M3 Lorentzian

M4 First Order  

M5 Second Order

M6 Third Order

M7 Sigmoidal dose-response (Slope variable)

M8 Sigmoidal dose-response

Where X – independent variable, Y – dependent variable, and Pr1,2,3,4 are constants

Fig. 3: Heatmap of Spearman’s rank coefficient between VIs and crop yield to the growth stage of the wheat crop

with values of 0.43 and 0.34, respectively, and the highest R2 of 
0.64, which confirms its strength in capturing canopy biomass and 
greenness related to crop productivity. In the NGRDI-based models, 

the M6 model portrays the lowest RMSE and MAE of 0.40 and 
0.32, respectively, and R2 of 0.69, demonstrating its ability to cap-
ture chlorophyll content and nitrogen-related physiological traits. 

CHOUDHARY and JAT
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The moderate R² and relatively low RMSE and MAE values indi-
cate reliable predictive capability. Similarly, for the NDWI2-based 
derived model, the M6 model showed RMSE and MAE of 0.39 and 
0.32, with R2 of 0.70, which reflects the sensitivity of this index 
to canopy water content and crop water stress. Its strong correla-
tion with yield is likely due to the influence of water availability on 
grain filling and biomass accumulation. A high R² and low RMSE 
suggest that NDWI2 effectively captures water-related stress factors 
influencing final yield, especially in semi-arid or variable rainfall 
regions.

Further, multivariate models were developed using the 
integration of three selected vegetation indices, WDRVI (greenness 
index), NGRDI (chlorophyll index), and NDWI2 (dryness index), 
that reflect key physiological and environmental factors affecting 
crop productivity. Based on the M6 (third-order polynomial) mod-
el, multiple combinations of multivariate models were generated 
as shown in Table 5. These combinations include, (a) All indices: 
This combination incorporates all parameters from the third-order 
polynomial equation for each index; (b) Without cube parameters: 
This combination excludes the cube parameters from the third-order 
polynomial equation; (c) Without square parameters: This combina-
tion excludes the square parameters, while retaining the linear and 
cubic parameters; (d) Without linear parameters: This combination 
excludes the linear parameters, while keeping only the square and 
cubic parameters; (e) Only linear, square, and cubic parameters: 
Each combination includes only the linear, square, or cubic parame-
ters from all indices, respectively; (f) Multiplicative index combina-
tions: In this combination, indices are multiplied together. 

The results of the multivariate models showed that mod-
els incorporating all third-order parameters (all indices), without the 
cube parameter, without square parameters, and the multiplicative 
index combination performed better in estimating yield using the 
three indices. When all three VIs were incorporated in the multi-
variate model development, the RMSE decreased by up to 0.37 t 
ha-1, and R2 increased to 0.74. Based on RMSE, R², and MSE, the 
four models (all cubic, without Cube, without square, and the mul-
tiplicative index combination) were further used to estimate wheat 
yield for the Rabi season of year 2019-20. These combinations were 
tested to evaluate whether incorporating different mathematical re-
lationships among the indices improves model performance or not, 
ultimately aiming to develop a robust multivariate yield prediction 
model.

Validation of models  

The developed multivariate models were validated using 
observed wheat yield data for the Rabi season of year 2019–20. The 
comparison of different Models shows that the third-order polyno-
mial-based (all_indices) combination model predicted yield with 
±10% deviation from the 1:1 line, indicating a good agreement 
between observed and simulated crop yield (Fig. 4 and Table 6). 
Whereas, other models predicted yield showed over-prediction or 
under-prediction within the ±10% deviation. These patterns high-
light the importance of including third-order polynomial compo-
nents for reliable yield estimation at the field scale.

Among all tested combinations, the model incorporating 
all third-order polynomial forms (All index) of selected indices, i.e., 
WDRVI, NGRDI, and NDWI2, exhibited the highest accuracy, with 

Table 4: Statistical parameters of different models for WDRVI, NGRDI, and NDWI2

Model WDRVI NGRDI NDWI2
RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE

M1 0.44 0.63 0.35 0.40 0.68 0.32 0.39 0.70 0.32
M2 0.44 0.63 0.35 0.41 0.68 0.32 0.39 0.70 0.32
M3 0.44 0.63 0.35 0.41 0.68 0.32 0.39 0.70 0.32
M4 0.44 0.63 0.34 0.40 0.68 0.32 0.39 0.70 0.32
M5 0.44 0.63 0.35 0.40 0.68 0.32 0.39 0.70 0.32
M6 0.43 0.64 0.34 0.40 0.69 0.32 0.39 0.70 0.32
M7 0.44 0.63 0.35 0.40 0.68 0.32 0.39 0.70 0.32
M8 0.44 0.63 0.35 0.40 0.68 0.32 0.39 0.70 0.32

Table 5: Different multivariate models developed based on the M6 model combination 

Models Equations RMSE R2 MAE
All  indices Y=A+B×p+C×p2+D×p3+E×q+F×q2+G×q3+H×r+I×r2+J×r3 0.37 0.74 0.30
Without cube                                                                                   Y=A+B×p+C×p2+D×q+E×q2+F×r+G×r2 0.38 0.72 0.31
Without square   Y=A+B×p+C×p3+D×q+E×q3+F×r+G×r3                                                                            0.38 0.72 0.31
Without linear Y=A+B×p2+C×p3+D×q2+E×q3+F×r2+G×r3 0.39 0.72 0.32
Only linear    Y=A+B×p+C×q+D×r                                                                                 0.39 0.71 0.32
Only square                                                                                     Y=A+B×p2+C×q2+D×r2 0.40 0.70 0.32
Only cube Y=A+B×p3+C×q3+D×r3                                                                                       0.40 0.69 0.32
Multiply1  Y=A+B×q+C×q×r+D×p×q×r+E×p^2                                                                                    0.40 0.70 0.32
Multiply2   Y=A+B×p+C×q+D×r+E×q×r+F×q×p+G×p×r                                                                                   0.38 0.72 0.31

Here Y = Crop yield (t ha-1), p = WDRVI_only_joint_boot_milk, q = NGRDI_only_joint_boot_milk, and r = NDWI2_except_har_cri                                           

Remote sensing-based yield estimation of wheat crop at farm scale
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R² of 0.74 and RMSE of 0.47 t ha-1 (Fig. 4). This model outper-
formed as compared to other combinations, i.e., without cube, with-
out square, and the multiplicative index model. It demonstrates the 
effectiveness of capturing non-linear relations among corresponding 
VIs that represent canopy greenness, chlorophyll content, and crop 
dryness conditions.

Unlike other studies, such as Du et al., (2025) demon-
strated the performance of the yield prediction model with R² values 
between 0.57–0.6 and RMSE of 0.42–0.58, using dense time-series 
data, crop model, and machine learning algorithms. However, the 
developed multivariate model in this study offers a simpler and 
more interpretable polynomial framework that still achieves a ro-
bust accuracy. In addition, consideration of important physiological 
stages (tillering, jointing, booting, milking, dough), excluding CRI 
and harvesting, improves the model’s yield prediction accuracy by 
avoiding noise from less informative periods.

CONCLUSIONS

This study demonstrates that wheat yield can be accurate-
ly estimated at the farm scale in semi-arid regions by integrating 
Sentinel-2 satellite data-derived VIs such as WDRVI, NGRDI, and 
NDWI2 in a multivariate model. The results of the study depicted 
that consideration of VIs at critical phenological stages, particularly 
“only_joint_boot_milk” and “except_har_cri” are most informative 
for yield estimation modelling. The developed univariate polynomi-
al models showed strong predictive performance with WDRVI (R² 

= 0.64), NGRDI (R² = 0.69), and NDWI2 (R² = 0.70), while a multi-
variate polynomial model further improved prediction accuracy (R² 
= 0.74). Furthermore, comparison of observed yield and simulated 
yield during the validation shows the robustness (R² = 0.74) of the 
developed multivariate model. The findings have significant practi-
cal implications, providing a cost-effective and scalable framework 
for field-scale yield forecasting in smallholder agricultural systems. 
This research offers a transparent and reproducible toolset that can 
be adopted by policymakers, agricultural extension agencies, and 
farmer collectives to improve data-driven decision-making and pro-
mote sustainable wheat production.
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Table 6: Validation results of developed multivariate models

Models Equations RMSE R2 MAE
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Fig. 4 :	Observed versus simulated yield for model validation; (a) for all index based model; (b) for without cube-based model; (c) for without 
square based model; (d) for multiply2 based model
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