
Accurate estimation of crop water requirements 
underpins sustainable irrigation management, especially in 
water-scarce regions where both over- and under-irrigation can 
detrimentally affect yields and deplete vital water resources. 
The evapotranspiration integrates soil evaporation and plant 
transpiration, serving as a primary driver for scheduling irrigation 
events (Alavi et al., 2024; Bijlwan et al., 2024; Mayani and Itagi 
2024). Established ET models-ranging from the temperature-based 
Hargreaves-Samani estimator to energy-balance approaches such as 
Priestley-Taylor and Makkink-depend on reliable meteorological 
inputs that are frequently unavailable or intermittently recorded in 
rural agricultural landscapes (Naik et al., 2025; Patel and Bunkar 
2025; Rajput et al., 2024). Concurrently, many agronomic advisory 
platforms rely on cloud-hosted machine-learning services to analyze 
weather data and dispense recommendations (Bakr et al., 2025; 
Jan et al., 2024); however, these solutions presuppose continuous 
internet connectivity and introduce concerns regarding latency, data 
privacy, and operational costs (Jiu et al., 2024; Jhajharia, 2025; 
Shaloo et al., 2024; Singh et al., 2024).

Recent breakthroughs in model quantization and edge-
AI inference have enabled deployment of compact, sub-billion-
parameter LLMs on low-power devices, opening new avenues for 
offline, real-time decision support. Yet, these small LLMs often 
lack the zero-shot reasoning capacity required for domain-specific 
tasks unless guided by carefully engineered prompts. Furthermore, 
existing edge-based agrometeorological tools rarely offer an 
integrated suite of multiple ET algorithms paired with an interactive 
user interface, limiting their practicality for extension officers 
and smallholder farmers. There is therefore a pressing need for a 
cost-effective, easy-to-use platform that leverages both robust ET 
computation and lightweight, on-device LLM inference to empower 
rural growers with actionable irrigation guidance without reliance 
on cloud infrastructure.

Notwithstanding its offline, edgebased design, 
AgroMetLLM relies on periodic OpenMeteo API access for inputs, 
currently supports only five evapotranspiration models and one 
prompt paradigm on quantized LLMs, and remains to be validated 
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We introduce AgroMetLLM, an on-device agrometeorological advisory system that combines five validated evapotranspiration (ET) models 
with various quantized Large Language Models (LLMs) on a Raspberry Pi 4B. The users specify a location, 3-7-day horizon by using Gradio 
interface and LLM; Open-Meteo APIs then supply daily inputs Tmax, Tmin, Tmean, RHmean precipitation, Food and Agriculture Organization (FAO) 
reference evapotranspiration (ET0), and Rs for multiple Indian sites. Computed ET ranges (mm day⁻¹) across locations were: FAO ET₀ 2.84-
6.21; Hargreaves-Samani 6.28-13.74; Turc 0.17-0.21; Priestley-Taylor 5.64-9.06; Makkink 2.73-4.38. A few-shot prompting strategy, based on 
curated examples for 3-, 5-, and 7-day forecasts, is used to guide the Qwen LLM under Ollama to produce structured, five-point advisories in 
1-2 s. One-way ANOVA (F = 3.30-6.71, p = 0.016-0.0002) and Kruskal-Wallis tests (χ2 = 9.61-15.48, p < 0.05 except Turc p = 0.088) confirm 
significant ET differences among models and LLM sizes. All outputs and metadata persist in SQLite, and Matplotlib renders comparative bar 
charts in the dashboard. These results demonstrate that compact, quantized LLMs can reliably deliver actionable irrigation guidance-matching 
cloud-based accuracy-while operating offline, with minimal latency and energy use, thus empowering resource-constrained smallholder farmers. 
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in operational field trials-limitations that set realistic expectations 
for its immediate deployment in heterogeneous farming contexts.

In response, we present AgroMetLLM, an edge-
computing system that consolidates five validated ET models with 
a 4-bit quantized LLM under the Ollama inference engine (Ollama, 
2025), all hosted on a single Raspberry Pi 4B. Through a Gradio-
based dashboard, users specify a location, forecast horizon, and 
preferred LLM; Open-Meteo APIs (Open-Meteo, 2025) supply 
geocoding and meteorological data, which are then processed in 
Python to compute ET metrics. A few-shot prompting strategy (Al 
Nazi et al., 2025) -anchored by 3-, 5-, and 7-day exemplar pairs-
enables the quantized model to generate structured, five-point 
agronomic advisories. The principal objectives of this work are: (i) 
to implement five standard ET algorithms on a low-cost, power-
efficient platform, (ii) to harness compact, quantized LLMs with 
robust prompt engineering for domain-specific advisory generation, 
and (iii) to deliver a seamless, offline interface for comprehensive 
ET forecasting, visualization, and actionable recommendations 
tailored to resource-constrained, smallholder farming contexts.

MATERIALS AND METHODS

Software tools

The AgroMetLLM platform was deployed on a Raspberry 
Pi 4B-equipped with a quad-core ARM Cortex-A72 processor 
and 8GB of RAM-running Raspbian Bookworm and Python 3.12. 
All computations run on a single Raspberry Pi 4B, who’s fullload 
power draw peaks at just 3-6 W. This ultralow energy footprint not 
only slashes operational costs compared to cloud or desktop servers, 
but also aligns with sustainable, offgrid deployment in energyscarce 
rural settings. We deployed five quantized LLMs—gemma3:1b 
(815 MB), granite3.1‑moe1b (1.4 GB), qwen2.5:0.5b (398 MB), 
qwen2:0.5b (352 MB), and smollm2:360m (726 MB. Even after 
reserving ≈1 GB for the operating system and Gradio interface, the 

Raspberry Pi provided sufficient headroom to load the largest model 
(1.4 GB) and run inference, with peak memory usage remaining 
below the 4 GB limit. Key Python libraries and tools included: (i) 
Gradio to provide an interactive web interface accessible over the 
local network, (ii) Requests for RESTful API calls to both Open-
Meteo and the local Ollama inference engine, (iii) Pandas and 
NumPy for efficient tabular data handling and numerical operations, 
(iv) Matplotlib to generate comparative evapotranspiration charts, 
(v) SQLite3 (built-in) for persistent storage of computed metrics and 
LLM advisories. Meteorological inputs were provided by the Open-
Meteo geocoding API (to resolve place names to latitude/longitude) 
and forecast API (to retrieve daily: maximum, minimum, and mean 
2 m air temperature; mean relative humidity; precipitation sum; 
FAO reference evapotranspiration; and total shortwave radiation). 
A locally-hosted, 4-bit quantized Qwen model ran under the Ollama 
inference engine (v0.9.0) on http://localhost:11434, ensuring low-
latency, on-device advisory generation without external cloud 
dependencies. 

Location resolution and data retrieval

User-supplied plain-text location strings (e.g., “Gangtok”) 
are sent to Open-Meteo’s geocoding endpoint with parameters for 
up to five matches and English-language labels. The response 
yields tuples (name, lat, lon, country) (name, lat, lon, country). If 
no result is returned, the interface displays a clear error (“Location 
not found. Please check spelling or try another location.”) and halts 
further processing. Weather Fetch. Once a valid latitude/longitude 
pair is selected, a second API call requests daily aggregates 
between today’s date and the user-specified horizon (3-7 days). 
The request parameters specify the following daily variables: (i) 
temperature_2m_max, temperature_2m_min, temperature_2m_
mean (°C), (ii) relative_humidity_2m_mean (%), (iii) precipitation_
sum (mm day⁻¹), (iv) et0_fao_evapotranspiration (mm day⁻¹), (v) 
shortwave_radiation_sum (MJ m⁻² day⁻¹). These are returned in 

Fig. 1: AgroMetLLM system flow
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JSON and loaded into a Pandas DataFrame with one row per forecast 
day. FAO Penman-Monteith (ET₀) is the globally recommended 
standard, it integrates solar radiation, air temperature, humidity 
and wind speed into a physically based model. Its comprehensive 
inputs make it highly accurate across diverse climates and the 
benchmark for crop water‑requirement estimation. Fig. 1 presents 
the AgroMetLLM system flow.

Evapotranspiration calculations

Day-of-year 𝑛 via pd.to_datetime (df[“time”]).dt.day of 
year.

Mean daily air temperature: Computed locally from API values. 
This simple average reduces daily extremes into a representative 
value used by all subsequent models.

; where, Tmax,Tmin obtained from the weather API 
and minimum 2 m air temperature (°C).

Extraterrestrial radiation Ra: Calculates solar radiation at the top 
of atmosphere for day-of-year  and latitude ϕ.

Latitude in radians:  ; where, lat - latitude (°), from 
the geocoding API.

Inverse relative distance factor Earth-Sun:   

It accounts for the varying Earth-Sun distance over the year, where  - 
day of year (1 - 365), computed via pandas from the API date.

Solar declination angle: ; where, 
declination  in radians of the sun, which varies seasonally.

Sunset hour angle: 

Extraterrestrial radiation Ra :  

where,Gsc=0.0820 MJ m-2 min-1 is Solar constant, Ra in MJ m-2 min-1.

Hargreaves-Samani method : It is an empirical, temperaturedriven 
formula needing only daily maxima and minima (and extraterrestrial 
radiation). Its minimal data needs suit arid or datascarce regions, 
though it may bias under high humidity variability. Locally 
computed, using  (from API) and . Empirical estimate of reference 
ET₀ in .

Turc method: Turc model is an energybalance approach combining 
mean temperature, relative humidity, and solar radiation. It performs 
well where radiation data are available but tends to underestimate 
evaporation in very dry environments. Locally computed if API 
provides mean temperature T, , mean RH, and shortwave radiation 
Rs. Energy‐balance ET based on mean temperature, humidity, and 
radiation.

Where,  T- mean temperature (°C) received from API as  in 

(°C),  RH- relative humidity from API  in (%), Rs - from API  in 
shortwave_radiation_sun (MJ m-2 min-1), ET in mm day-1. 

Slope of saturation vapor pressure curve : Locally computed from  
Tavg in kPa °C-¹.

Psychrometric Constant : Locally computed from assumed 
atmospheric pressure.

γ= 0.000665×P; where, P in kPa uses P=101.3 kPa, γ in kPa °C-¹.

Priestley-Taylor method: It is a semiempirical simplification of 
Penman-Monteith, it uses net radiation and a constant coefficient 
(α≈1.26) to approximate advection effects. It balances physical 
realism with reduced data demands, especially effective in humid 
conditions. Locally computed approximating net radiation by . 

 
shortwave_radiation_sun (MJ m-2 min-1).

Makkink method: Makkink is another radiationbased, semiempirical 
model that scales incoming radiation by the slope of the saturation 
vaporpressure curve and a psychrometric constant. Its conservative 
estimates often serve as a lower bound in ensemble analyses. 
Locally computed similarly using .

; where, units and inputs as in 
Priestley-Taylor.  

Algorithm: AgroMetLLM

The AgroMetLLM algorithm begins by accepting three 
user specified inputs: a location name (string), the forecast horizon 
in days (integer between three and seven), and the choice of a locally 
hosted, quantized LLM via Ollama. It first resolves the location 
through a geocoding API call-halting with an error message if no 
matches are found-and extracts the selected latitude and longitude. 
Using these coordinates, it retrieves daily meteorological data 
(maximum, minimum, and mean temperature; relative humidity; 
precipitation; FAO reference evapotranspiration; and shortwave 
radiation) for the specified period. The data are loaded into a 
DataFrame, and for each day the algorithm computes the day-of-
year, extraterrestrial radiation Ra (via the solar declination, inverse 
Earth-Sun distance, and sunset hour angle), and mean air temperature 
Tavg. It then calculates four empirical and energy-balance estimates 
of potential evapotranspiration - Hargreaves-Samani, Turc (when 
mean temperature, humidity, and radiation are available), Priestley-
Taylor, and Makkink-using the appropriate combinations of Tavg, 
shortwave radiation, and psychrometric constants. After appending 
these ET metrics to the DataFrame, it generates a concise daily 
summary string and submits it to the Ollama inference engine, 
which returns a structured agronomic advisory. Finally, both the 
computed metrics and advisory text are stored in a local SQLite 
database, and a comparative bar chart of all five ET estimates is 
rendered for the end user.

AgroMetLLM: An evapotranspiration and agro-advisory system using large language models
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Advisory generation, logging, and visualization

Once all evapotranspiration calculations are complete, 
the system compiles a daily summary string for each forecasted 
date. This standardized representation ensures that the local LLM 
receives uniform, machine-readable input describing maximum 
and minimum temperature, precipitation, the FAO reference 
evapotranspiration, and the four computed model estimates. All 
computed ET metrics and LLMgenerated advisories are stored 
locally in an SQLite database, enabling users to review historical 
forecasts and recommendations without any network connection. 
Extension officers or farmers can query past entries via simple 
SQL or export tables to CSV for further analysis or recordkeeping. 
Simultaneously, Matplotlib bar charts and violin plots-annotated 
with exact values and clear legends-are embedded in the Gradio 
dashboard, so that nonspecialist users can instantly see which days 
demand higher irrigation, how different models compare on any 
given date, or spot trends over a multiday window. Because these 
graphics render entirely ondevice, they can be saved as images 
or printed, providing an offlinefriendly, visual decision aid in 
connectivitylimited settings.

Visualization and front-end update

To aid interpretation, Matplotlib produces a grouped bar 
chart displaying FAO ET₀ and the four model estimates side-by-side 
for each forecast day. Each bar is annotated with its numerical value, 
allowing for quick visual comparison of model behavior under 
varying weather conditions. Finally, the Gradio interface is updated 
to present: (i) the tabular ET metrics, (ii) the comparative chart, (iii) 
real‐time model information, and (iv) the LLM-generated advisory 
text. This integrated dashboard provides users with an at-a-glance 
understanding of forecasted water requirements and actionable 
agronomic guidance. 

RESULTS AND DISCUSSION

The AgroMetLLM web interface runs on a Raspberry Pi 
4B. Across the top, the user selects a quantized local model (here 
“granite3.1-moe1b”) from a dropdown, enters a location in the text 
box, and adjusts the forecast horizon via a slider (set to 7 days). 
Immediately below, the model info bar reports family, parameter 
count (1.3 B), quantization level (Q8_0) and architecture. After 
clicking Search Location, the resolved match (“4. Pusa, India 
(25.9862, 85.6796)”) appears in a secondary dropdown, which 
in turn enables the Generate ET Forecast & Local LLM Advisory 
button.

Once executed, the “Evapotranspiration Metrics (mm/
day)” table populates seven rows (2025-06-12 through 2025-06-
18), showing for each date the geographic coordinates, maximum 
and minimum 2 m air temperatures (°C), precipitation (mm day⁻¹), 
FAO reference ET₀ (API), and the four computed ET estimates 
(Hargreaves-Samani, Turc, Priestley-Taylor, Makkink). Directly 
beneath, a grouped bar chart-titled “Comparative ET Models 
Forecasting - Pusa (25.9862, 85.6796)”-plots all five ET series side 
by side for each date, with values annotated above each bar and a 
legend indicating model colors.

Finally, the “Farmer Advisory (LLM Output)” textbox 
at the bottom presents five numbered recommendations (Irrigation 
plan, Crop/soil action, Livestock/labour, Pest & disease watch, 
Input-saving tip), generated by the local LLM using the standardized 
summary input. This integrated dashboard allows users to review 
numerical results, visualize multi-model ET comparisons, and 
immediately access tailored agronomic advice.   

3-Day average forecast ET outputs by location

The Fig. 2 illustrates the three-day average 
evapotranspiration (ET) forecasts from five models across seven 
Indian locations. Consistently, the Hargreaves-Samani method 
predicts the highest ET rates-ranging from 6.28 mm day⁻¹ in Gangtok 
to 13.74 mm day⁻¹ in Pusa-while the Turc model yields negligible 
values (~0.17-0.21 mm day⁻¹) at all sites. The FAO reference ET₀ 
falls in an intermediate range of approximately 2.84 mm day⁻¹ 
(Gangtok) up to 6.21 mm day⁻¹ (Bikaner), and the Priestley-Taylor 
estimates span 5.64 mm day⁻¹ (Gangtok) to 9.06 mm day⁻¹ (Pusa). 
Makkink results are lower than Priestley-Taylor but higher than 
FAO ET₀ (2.73 mm day⁻¹ in Gangtok to 4.38 mm day⁻¹ in Pusa). 
This pattern highlights the strong sensitivity of temperature-based 
algorithms (Hargreaves-Samani) compared to radiation- or energy-
balance approaches, with arid locations (e.g., Bikaner, Pusa) 
showing markedly higher ET across all models.

Distribution of ET model data

Fig. 3 presents violin‐plot distributions of the five ET 
model forecasts-Hargreaves-Samani, Turc, FAO ET₀, Priestley-
Taylor, and Makkink-across the seven locations (Pusa, Muzaffarpur, 
Bikaner, Tiruchi, Cuttack, Karnal, and Gangtok).  The Hargreaves-
Samani estimates exhibit the highest medians and the greatest spread 
overall, with Pusa and Muzaffarpur showing the widest variability 
(≈11-15 mm day⁻¹) and Gangtok the lowest (≈6 mm day⁻¹).  In 
contrast, the Turc method produces extremely low values at all sites 
(medians ~0.15-0.20 mm day⁻¹) with minimal dispersion, reflecting 
its sensitivity to humidity and radiation.  FAO ET₀ forecasts are 
intermediate, with medians ranging from ~3 mm day⁻¹ in Gangtok 
to ~8 mm day⁻¹ in Bikaner and a moderate interquartile spread.

Priestley-Taylor shows a broad distribution similar to 
Hargreaves-Samani but shifted downward (≈4-11 mm day⁻¹), 
while Makkink remains the most conservative energy‐balance 
model, with medians of ~2-4.5 mm day⁻¹ and comparatively 
narrow violins.  These patterns underscore both the systematic 
differences among ET formulations and the influence of local 
climate conditions on model variability.

LLM wise comparison of ET model data

Fig. 4 compares the five‐model average ET forecasts 
produced by each of the five local LLMs (gemma3:1b, granite3.1-
moe1b, qwen2.5:0.5b, qwen2:0.5b, and smollm2:360m).  For the 
temperature-driven Hargreaves-Samani method, the three largest 
models cluster at high ET rates (~12.5-13.0 mm day⁻¹), while the 
smaller qwen2:0.5b and smollm2:360m yield lower averages of 
9.14 mm day⁻¹ and 10.26 mm day⁻¹, respectively.  FAO reference 
ET₀ likewise declines with model size, from 5.38 mm day⁻¹ 
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Fig. 2: Forecast of ET models by location.

Fig. 3: Distribution of forecast data of ET models by location.

Fig. 4: Average ET model wise forecast data by LLMs.
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(gemma3) down to 3.58 mm day⁻¹ (smollm2).  The Turc estimates 
remain negligible (0.14-0.19 mm day⁻¹) across all models, reflecting 
its sensitivity to humidity and radiation inputs.  Energy-balance 
methods show a similar size‐dependent pattern: Priestley-Taylor 
averages range from ~7.9 mm day⁻¹ in the larger LLMs to 5.48 mm 
day⁻¹ in smollm2, and Makkink from ~3.8 mm day⁻¹ down to 2.65 
mm day⁻¹.  Overall, larger, higher‐parameter LLMs systematically 
produce higher ET estimates for temperature- and radiation-based 
models, whereas all models converge on near-zero Turc values.

Statistical analysis

The one‐way ANOVA (Table 1) revealed that mean 
evapotranspiration (ET) estimates differ significantly across the 
four tested quantized LLMs for every metric: FAO ET₀ (F = 3.64, 
p = 0.010), Hargreaves-Samani (F = 6.71, p < 0.001), Turc (F = 3.30, 
p = 0.016), Priestley-Taylor (F = 3.71, p = 0.009), and Makkink (F 
= 3.71, p = 0.009). In all cases, the null hypothesis of equal means 
was rejected at  = 0.05, indicating that at least one model’s daily 
ET output differs from the others for each method. Because some 
ET distributions departed from normality or exhibited unequal 
variances, we also applied the nonparametric Kruskal-Wallis 
test (Table 1). Consistent with the ANOVA, we found significant 
differences in distribution for FAO ET₀ ( = 9.61, p = 0.048), 
Hargreaves-Samani ( = 15.48, p = 0.004), Priestley-Taylor ( = 
11.85, p = 0.019), and Makkink ( = 11.85, p = 0.019). The Turc 
method, however, did not reach significance ( = 8.10, p = 0.088), 
suggesting broadly similar Turc outputs across the four models. The 
Turc model consistently produced very low ET estimates (≈0.14-
0.21 mm day⁻¹) with minimal spread across all seven locations and 
five quantized LLMs. Because Turc’s formulation heavily weights 
incoming radiation and mean humidity-and our test sites exhibited 
similar radiation-humidity regimes-its output remains nearly 
constant regardless of slight variations in the summary inputs or the 
LLMdriven advisory context. 

CONCLUSION

AgroMetLLM successfully demonstrates that a Raspberry 
Pi 4B running open-source tools and quantized LLMs can deliver 
end-to-end ET forecasting and agronomic advice without cloud 
dependencies. By combining five validated ET algorithms with 
multi-shot prompt engineering, the system produces consistent, 
structured recommendations tailored to local meteorology. The 
significant differences observed-both among ET formulations and 
across LLM sizes-highlight the importance of model selection for 
field applications. Persistence in SQLite and real-time visualization 

via Gradio ensure transparency and ease of interpretation for end 
users. Future work will extend the platform to incorporate additional 
climate variables (e.g., wind speed, soil moisture), support multiple 
languages, and validate advisory accuracy in operational farm trials. 
Ultimately, AgroMetLLM paves the way for scalable, LLM-driven 
decision support in precision agriculture under resource constraints. 
Despite these strengths, the current system still depends on 
intermittent Open‑Meteo API access for inputs, supports only five 
ET algorithms and a single few‑shot prompt paradigm on quantized 
LLMs (e.g., Phi‑2, TinyLLaMA, Mistral‑instruct), and remains to be 
validated in operational field trials-limitations that may constrain its 
robustness and generalizability across diverse agroclimatic zones.
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Table 1: ANOVA and Kruskal-Wallis test results of ET models across LLMs

ET Models F_statistic p_value Significance Kruskal_statistic p_value Significance

FAO ET0 3.638907 0.010145 * 9.611525 0.047505 *

Hargreaves-Samani 6.708787 0.000157 * 15.4817 0.0038 *

Turc 3.304287 0.016345 * 8.09704 0.088087 -

Priestley-Taylor 3.705408 0.009231 * 11.84606 0.018533 *

Makkink 3.705408 0.009231 * 11.84606 0.018533 *
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