
Vegetation in the Algerian Sahara, particularly in El 
Meniaa, is undergoing significant changes. Remote sensing 
observations are now used for the spatial and temporal evolution of 
vegetation at a regional scale (Wang et al., 2023)  which allows for a 
dynamic and comprehensive analysis of plant transformations over 
vast territories (Helman, 2018). The land surface phenology (LSP) 
metrics allow for precise mapping of vegetation dynamics from 
remote sensing data. The key indicators are the start of the season 
(SOS), the length of the growing season, the peak of growth (POS), 
and the end of the season (EOS) (De Beurs et al., 2010) besides the 
maturity and senescence. These measures are calculated using the 
Normalized Difference Vegetation Index (NDVI) or other common 
vegetation indices and are expressed in days and years (Alemayehu 
et al., 2023). 

Satellite phenological study is an emerging field focused 
on cereal and market garden crops (Benaouf et al., 2015; Pokhariyal 

et al., 2024; Patel et al., 2023). Processing data from multiple 
remote sensing sources and scales is a major technological challenge 
today. Faced with the growing complexity of spatial data analysis, 
Google Earth Engine (GEE) has become a revolutionary computing 
solution. This gigantic intensive processing platform offers 
remarkable computational capabilities that enable addressing the 
algorithmic challenges related to the analysis and global simulation 
of satellite data (Louati et al., 2023). Moreover, integrating 
Analytical Hierarchy Process (AHP) with GIS improves decision-
making processes through effective mapping and visualization 
capabilities. This facilitates the creation of land-use suitability maps 
and optimizes land-use planning (Kayal et al., 2025).

Saharan areas are sensitive indicators of climate change, 
and it is therefore crucial to monitor them to develop effective 
adaptation and mitigation policies. This study aims to estimate 
corn phenological parameters in this region, using high-resolution 
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This study utilizes remote sensing (Sentinel-2 images via Google Earth Engine) to analyze maize growth in the El Meniaa region, Algeria, and 
assess agricultural land suitability. Using vegetation indices (NDVI, EVI, NDPI), growth cycles were characterized, showing a cyclical NDVI 
evolution (0.51 at the start, peaking at 0.71, and dropping to 0.06-0.09 at season end). A multi-criteria approach (AHP method) revealed that the 
topographic criterion (weight 0.413, notably aspect) is the most influential for agricultural suitability, followed by climatic data (weight 0.327, 
including temperature) and vegetation indices (weight 0.216, including NDVI). This research demonstrates the effectiveness of integrating remote 
sensing and multi-criteria analysis to accurately model crop phenology and map areas of high agricultural suitability, offering a transferable 
methodological framework for arid regions of Algeria.
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satellite images via Google Earth Engine to obtain phenological 
metrics from various vegetation indices. 

MATERIAL AND METHODS

Study area

The study area is located in the region of El Meniaa, 
Algeria. It is bordered to the north by wilaya of Ghardaïa to the 
south, wilaya of Ain Saleh to the east, wilaya of Ouargla to the west, 
wilaya of Timimoun (Fig. 1). It has hot desert climate, with long 
and extremely hot summers and short and hot winters. There is very 
little rain throughout the year and summers are particularly dry. For 
cultivation in this region and apart from the Oases, wheat and corn 
are the main crops of this region and constitute the backbone of its 
economy. Other crops include potatoes, tomatoes, peas and other 
plantations.

Satellite data

Sentinel-2 satellite data were used in this study to 
calculate phenological parameters. These metrics were derived 
using vegetation indices such as Normalized Difference Vegetation 
Index (NDVI), Enhanced Vegetation Index (EVI), Normalized 
Difference Phenological Index (NDPI). Satellite data preparation 
and phenological modeling were carried out on Google Earth 
Engine (GEE) platform.  The formulas used are:  

NDVI=
NIRBand - RedBand   
NIRBand + RedBand  

NDPI =
(NIR - (alpha * RED + (1 - α) * SWIR)
(NIR + (alpha * RED + (1 - α) * SWIR)

EVI=
2.5 * (NIR - RED)

(NIR + 6 * RED - 7.5 * BLUE + 1)

Here, NIR (band 8), RED (band 4), BUE (band 2) and 
SWIR (band 11) were obtained from Sentinel 2. The value of α was 
set to 0.51, as it was considered the most effective value to suppress 
soil background variability (Varghese, 2017).

Data processing

The experimental site is located in the eastern part of the 
commune of El Meniaa (3.59 °N °31.32E), representing a maize 
cropping system. The beginning and end of the growing season 
were also recorded at the experimental site. In October 2024, a 
field campaign was conducted in the study area to measure crop 
yield. A total of 31 pivots or plots were selected in the study area 
for this purpose. Plot size varied between 29 and 31 hectares, and 
information on transplanting date (DOT) and harvesting date (DOH) 
was collected from farmers as secondary data. The corn plowing 
season runs August 15 to September 15, and the harvest season runs 
from November 15 to December 15. 

Methodology

In this study, a method based on the analysis of vegetation 
indices was applied. This approach allows identifying the start and 
end dates of the growing season respectively the SOS (Start of 
Season) and the EOS (End of Season) as being the first and last 
day on which a specified threshold value is exceeded. The length of 
the growing season is then calculated as the period separating SOS 
and EOS. In our study the threshold value, noted τ, was defined 
dynamically, according to the characteristics of each pixel of the 
NDVI and EVI indices (Koutsoumanis et al., 2020) in order to take 
into account local variations linked to the type of land cover and 
climatic conditions.

Fig. 1: Study area map​
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Where τ is the dynamic threshold value, which depends on the 
annual amplitude of the time series; minVi and maxVi, represent 
the minimum and maximum values of the vegetation index during 
the crop-growing season, respectively. The value φ was calculated 
and set to 0.33 which represents the mid-green and mid-green of the 
crop growth cycle (Pokhariyal et al., 2024).

Executing multi- criteria evaluation using AHP techniques

The Analytical Hierarchy Method (AHP), is a widely 

used multi-criteria approach to address complex decision-making 
problems (Saaty and Vargas, 2006). It prioritizes and assigns weights 
to the various factors involved, based on pairwise comparisons on a 
numerical scale from 1 to 9. This method is based on a hierarchical 
structure that facilitates the analysis of relationships between the 
main criteria and their sub-criteria. In this study, five main criteria 
influencing maize growth were identified, each of which is broken 
down into several sub-criteria. Using the AHP approach, we 
constructed the judgment matrices, calculated the respective weights 

Fig. 2: The​ reclassification of indices using AHP_GIS

Table 1 : Criteria and sub-criteria weights and consistency ratios from AHP analysis

Main criteria Weight Sub criteria Weight Consistency ratio
Climatic 0.327 Relative humidity 0.206 0.06

Air temperature 0.270
NDSI 0.216
LST 0.242
UTFVI 0.067

Topographic 0.413 Appearance 0.499 0.05
Slope 0.396
DEM 0.105

Vegetation indices 0.216 NDVI 0.436 0.01
EVI 0.413
NDPI 0.081
SPI 0.070
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of each element, and verified the consistency of the judgments using 
the consistency ratio (CR). A matrix is considered consistent when 
the CR is less than 0.1 (Saaty and Vargas, 2006). The weights thus 
obtained were then integrated into a geographic information system 
(GIS), more precisely with the ArcGIS 10.4 software, to produce 
a multi-criteria spatial analysis (Saaty et al., 2022). Finally, a field 
study was carried out to collect accurate data and validate reliability. 
The index weight was determined by the analytical hierarchy 
process in this study and, we used expert choice.11 software to 
measure the consistency index and weight value. The result shows 
that CR = 0.06 < 0.1, which means that the consistency ratio is 
acceptable (Table 1). All raster data were resampled according to 
the classification criteria of all factors. The spatial resolution of all 
factors was unified at a scale of 30 m × 30 m, and all data used in the 
study were projected into the WGS1984 projection system. 

RESULTS AND DISCUSSION

Fig. 2 illustrates the reclassification of the different 
environmental and topographic indices, expressed on a scale of 
1 to 10, where 1 corresponds to the least favorable values (poor) 
and 10 to the most favorable values (excellent). These indices were 
reclassified for use in a multi-criteria analysis based on the AHP 
method, in order to assess the pivot’s suitability. We combined a 
phenological index (NDPI), vegetation indices (NDVI, EVI) and 
texture features (DEM) (Yu et al., 2013), temperature indices 
(LST) and Urban Thermal Field Variance Index (UTFVI), humidity 
and salinity (NDSI), orientation indices (Aspect) and slope to 
classification model.

Fig. 3: Temporal variation of NDVI during maize crop seasons
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Temporal profile of NDVI during the crop growth cycle

Fig. 3 presents the time series of the NDVI index of 
the experimental site, with the Start of Season (SOS) during the 
growing season (for each week/days) (DTS1, DTS2, DTS3 DTS4 
DTS5 DTS6) and the End of Season (EOS) based on satellite data 
phenology observations during the 2024 agricultural season (Fig. 3). 
It also illustrates the dates of start (SOS) and end of growing season 
(EOS), calculated for each vegetation index used in this study.

	 Analysis of NDVI images (Fig 3) clearly shows a cyclical 
evolution of vegetation over the season, reflecting different phases 
of growth, stagnation, and decline. NDVI index values vary 
significantly across seasons and spatial regions, highlighting the 
influence of local environmental conditions and cardinal directions. 

From the beginning of the season (SOS), NDVI values are relatively 
high with a maximum of 0.51, indicating good initial vegetation 
cover, particularly in the areas shown in red and orange. During 
the season (DTS), the index shows a marked fluctuation: a peak in 
plant vigor is observed at NDVI_DTS2 with a maximum value of 
0.63, followed by a period of stagnation or stress at NDVI_DTS4 
where values drop to 0.43. A new peak is recorded at NDVI_DTS5 
with a maximum value of 0.71, reflecting a notable recovery in 
plant growth. These variations illustrate natural cycles influenced 
by climatic conditions and available resources. At the end of the 
season (EOS), the values drop sharply with a maximum of 0.09 
and a minimum of 0.06, marking the end of the growing cycle and 
the transition to a phase of decline or inactivity. Spatial analysis of 
NDVI values reveals marked regional differences. The north shows 
high NDVI (0.51 to 0.71) but strong degradation at the end of the 

Fig. 4: Temporal variation of NDPI during maize crop seasons
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season due to intensive resource use. The south exhibits low values 
(0.09 to 0.06), indicating low plant density due to unfavorable 
conditions. The east and west display heterogeneity (0.43 to 0.71), 
reflecting local variations in nutrient availability, soil moisture, or 
climatic exposure. These observations highlight the importance 
of geographical and environmental factors for understanding 
vegetation dynamics and optimizing agricultural and ecological 
management.

Temporal profile of NDPI during the crop growth cycle

Fig. 4 shows NDPI data for periods similar to NDVI. 
Analysis of NDPI images, used here as a phenology indicator, 
reveals a clear cyclical evolution of plant development over the 
season, allowing the identification of different phases of plant 
growth, maturity and decline: positive values indicate significant 
plant activity, while values close to zero or negative correspond to 

areas with little vegetation or in a resting phase.

	 From the beginning of the season (SOS), the values are 
relatively low with a maximum of 0.33 and a minimum of -0.09, 
reflecting a slow start of phenology across the entire territory. 
As the season progresses (DTS), the index shows a characteristic 
fluctuation; after a slight improvement with a peak at 0.47 during 
NDPI_DTS2, the values stabilize around 0.47 before temporarily 
dropping to 0.38 during NDPI_DTS4, indicating stress or 
stagnation. A notable recovery then occurs with a peak at 0.56 
during NDPI_DTS5, followed by a stabilization at 0.57 at the end 
of the season (NDPI_DTS6). These variations illustrate the natural 
cycles of crop development, influenced by climatic conditions and 
water availability. In terms of spatial distribution, the differences 
according to cardinal orientations are well marked: the northern 
region, although timidly demarcating, follows an active cyclical 

Fig. 5: Correlation between the indices
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dynamic with significant peaks, while the southern region shows a 
gradual but constant improvement. The eastern and western zones, 
on the other hand, present a more heterogeneous distribution, 
probably reflecting local differences in soil, exposure and access to 
water. At the end of the season (EOS), the values reach a maximum 
of 0.57, with a dominance of orange and red colors, showing that the 
plants have reached their optimal maturity. Thus, the NDPI index 
asserts itself as a relevant tool to precisely monitor the key stages of 
the phrenological cycle of crops and adapt agricultural practices to 
the spatio-temporal needs of the plots (Wang et al., 2017).

Correlations among different indices

The pair plots for both sets of indices (NDPI, NDVI, 
EVI during, start and end seasons)) consistently demonstrate 
strong positive correlations among all three indices within each set, 
indicating that they measure similar aspects of vegetation or surface 
characteristics and tend to increase or decrease together (Fig. 5). 
Specifically, a very strong positive linear relationship is observed 
between NDPI_start and NDVI_start in the first set, and between 
NDVI_S4 and NDPI_S4 in the second set. While the distributions of 
the ‘start’ indices are multimodal, the ‘S4’ indices generally exhibit 
unimodal distributions, suggesting different value concentrations 
across the datasets (Fig. 5). The central areas, rich in vegetation and 
benefiting from favorable climatic conditions, appear to be the most 
promising. On the other hand, the peripheral areas, marked by steep 
slopes and low plant density, require special attention to optimize 
their exploitation.

CONCLUSION

	 This study successfully demonstrates the effectiveness 
of integrating remote sensing (Sentinel-2, GEE) and multi-criteria 
analysis (AHP) for precise maize crop monitoring and rigorous 
agricultural suitability assessment in the El Meniaa region of Algeria. 
The results confirm the predominant influence of topography, 
climatic data, and vegetation indices on crop productivity. This 
robust and transferable methodological framework offers a 
promising solution to address the challenges of food security and 
sustainable resource management in the face of climate change in 
similar regions
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