
The agriculture sector contributes significantly to the 
economic and social well-being of over a billion people worldwide, 
particularly smallholder farmers who depend on it for their 
livelihoods. Climate change poses one of the most severe threats 
to global agriculture, jeopardizing food security and economic 
stability, especially in vulnerable regions (Chapman et al., 2020; 
Pandey 2023). The increasing frequency and intensity of extreme 
weather events, such as heatwaves, droughts, and irregular rainfall, 
are placing enormous pressure on agricultural systems, particularly 
in rain-fed areas (IPCC, 2022). West Africa, with its predominantly 
rain-fed agricultural systems, is particularly vulnerable to climate 
change impacts (Gregorio et al., 2019). Senegal, located in the 
western Sahelian belt, exemplifies these vulnerabilities. The 
country’s agricultural system is heavily reliant on seasonal rainfall, 
which has become increasingly erratic and unreliable over the years 
(Giller et al., 2021). The consequences of rising temperatures and 
shifting rainfall patterns have led to significant declines in crop 
productivity and increased food insecurity, posing severe risks to 
rural livelihoods and economic growth (Ebi et al., 2021; Clarke 
et al., 2022). While the global threats of climate change are well-

documented, there is still a significant gap in understanding how 
these changes specifically affect Senegal’s agricultural systems. 
Despite the country’s significant surface water resources, 95% of 
agriculture remains rain-fed. Agriculture contributes about 15% to 
Senegal’s GDP (World Bank Open Data). However, future climate 
projections for the region indicate that rainfall, particularly in the 
western Sahel, including Senegal, is expected to decrease, especially 
during the early monsoons (Genowefa et al., 2021).

Sorghum is a climate-resilient cereal crop used in semi-
arid locations like Senegal. It provides smallholder farmers with 
food and fodder due to its tolerance of high temperatures and low, 
irregular rainfall. Sorghum helps ensure food security and livelihoods 
in West Africa, where agricultural production depends on rainfall 
(Akinseye et al., 2019). To address these challenges, crop models 
are an effective tool for assessing the potential impacts of climate 
change on crop yields and identifying viable adaptation strategies. 
By simulating crop growth under various climate scenarios, these 
models can evaluate the impact of moisture stress on crop yields 
and help identify vulnerable regions, as well as assess the potential 
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Abiotic stressors have a significant impact on crop productivity, with moisture stress being especially important. This study investigates the 
consequent shifts in sorghum yields in Senegal, using NASA Power and CHIRPS data from 1990 to 2024. Matam, Mbane, Gamadji Sarre, and 
Yang-Yang were identified as hotspots by the Rainfall Anomaly Index (RAI) with low rainfall, exhibiting only 12–15% rainy days. Precipitation 
was categorized into Above-Normal (AN) or Below-Normal (BN) using the Rainfall Anomaly Index (RAI; AN if RAI ≥ 0, BN if RAI < 0). 
Sorghum yields were notably lower during BN years. APSIM model was used to assess the impact of fertilizer doses (40 kg ha-1 and 60 kg 
ha-1) and sowing dates on yield variations. The results indicate minimal yield fluctuation with increased fertilizer within recommended limits 
and highlight that reliable rainfall forecasts (80% or greater accuracy) can significantly influence farm-level decision-making. These findings 
emphasize the crucial role of rainfall variability in agricultural planning and climate adaptation strategies. 
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benefits of adaptation measures such as improved irrigation, 
drought-resistant varieties, and sustainable land management 
practices (Cacho et al., 2020; Kheir et al., 2021; Govindaraj et al., 
2023). APSIM model has been evaluated across the continents for 
different crops and management practices under climate change 
scenarios (Yamusa, and Akinseye 2018; Sinha et al., 2021; Maluvu, 
et al., 2025). The objectives of this study are to assess moisture 
stress vulnerability in some regions of Senegal, and to conduct a 
comprehensive analysis to identify rainfall deficit -prone regions. 
Further to investigate factors affecting sorghum yields and explore 
sustainable agricultural practices to determine the minimum rainfall 
threshold required for reliable agricultural planning.

MATERIAL AND METHODS

Study area

Senegal, located in the westernmost part of Africa, faces 
challenges such as poor soil quality and erratic precipitation (Fig. 
1). Senegal’s climate varies significantly between its coastal and 
inland regions, which experience a Sudano-Sahelian climate. The 
country has two main seasons: the rainy season (June to October), 
influenced by monsoon winds from the St. Helena High, and the dry 
season, marked by the northern Harmattan winds. The southern part 
of Senegal receives more than 1000 mm of rain annually, while the 
arid northern regions receive less than half that amount

In this study we used NASA Power data from 1990 to 2024 
for maximum and minimum temperatures and relative humidity 
with a resolution of 0.50 x 0.50 degrees and CHIRPS precipitation 
data with a high resolution of 0.050 x 0.050 degrees from the Climate 
Hazards Centre at the University of California, Santa Barbara, 
demonstrates a comprehensive and rigorous approach to analysing 
climate trends in Senegal. The climate and agricultural data were 

collected from 25 sites across Senegal and bias-corrected daily 
climate data from gridded, and simulated datasets. We used soil 
profile data from representative stations and sorghum crop data 
from two locations to calibrate the model.

The APSIM model has been used to simulate sorghum 
yield, biomass, and LAI at varied locations, sowing windows, and 
fertilizer rates. Moisture-stress-prone zones were identified using 
seasonal rainfall totals, rainy day counts, wet/dry day indices, 
exceedance likelihood diagrams, and the Rainfall Anomaly Index 
(RAI). Annual and seasonal rainfall and temperature spatial 
distribution maps described the study area’s climatic baseline. 
Pair plots of yield, biomass, and LAI were utilized to analyze 
interrelationships under different treatments, and rainy-day 
percentage contribution was calculated as wet days to crop-growing 
season days.

	 Sorghum is grown rainfed in Senegal during the primary 
rainy season. The crop growth season runs from June/July to 
October, depending on the West African monsoon. Sowing begins 
with the first effective rains in June or early July, and harvesting in 
October–November. A day with ≥1 mm of rainfall was considered 
wet, whereas a day with <1 mm of rainfall was considered dry. 
The percentage of wet days relative to the total number of days in 
the crop-growing season was used to compute the wet day index. 
Likewise, the percentage of dry days was used to compute the dry 
day index. The distribution of rainfall and intra-seasonal variations 
were clearly measured by these indexes.

Rainfall Anomaly Index (RAI) 

The Rainfall Anomaly Index (RAI) of Van Rooy 
(1965) to quantify departures of a period’s precipitation from its 
climatological mean. Let the period be monthly, seasonal, or annual 
but be consistent throughout.

Fig. 1: 	 Study locations across Senegal. Map showing the 25 climate and agricultural stations used in the analysis, with the four moisture-stress-
hotspots Matam, Mbane, Gamadji Sarre, and Yang-Yang—highlighted. These stations represent key agroecological zones used for 
rainfall variability assessment and APSIM simulations.

Crop vulnerability and climate adaptation to moisture stress in Senegal
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Positive anomaly (wet departure):

	 	

Negative anomaly (dry departure):

	  

P = precipitation for the target period (mm)

P̅ = long-term mean precipitation for the same period at a site (mm)

P̅10H = mean of the 10 highest precipitation values in the historical 
series for that period (mm)

P̅10L = mean of the 10 lowest precipitation values in the historical 
series for that period (mm)

RAI is unitless; larger positive values indicate wetter-than-normal 
conditions; larger negative values indicate drier-than-normal 
conditions. Using the means of the 10 highest/lowest values avoids 
instability from a single extreme year and is the standard Van Rooy 
scaling

Above-Normal (AN) vs Below-Normal (BN) season

We adopt a transparent, reproducible rule for 

season classes to aligns AN/BN classification directly with 
the climatological mean and is consistent with RAI scaling. 
Baseline rule (recommended): AN (Above-Normal): RAI ≥ 0 (i.e., 
P ≥ ); BN (Below-Normal): RAI < 0 (i.e., P < ). This aligns AN/BN 
cleanly to departures from the site-specific climatology and avoids 
ad-hoc thresholds. Seasonal rainfall study and rainy days indicated 
significant spatio-temporal variability, with some sites having 
protracted wet spells and others drying off early. Then, the Rainfall 
Anomaly Index (RAI) with wet and dry day indexes showed years 
of excess and deficit rainfall. Exceedance probability maps showed 
the possibility of getting threshold rainfall amounts, identifying 
moisture stress-prone zones. 

The study spatially represented annual rainfall 
distribution and identified water stress zones by counting wet days 
at each location. The climatological indices showed that rainfall 
and temperature fluctuations greatly affect the commencement, 
duration, and severity of the rainy season, which affects sorghum 
productivity. Four places experienced far lower rainfall than others. 
Due to long-term data availability, soil profile completeness, and 
agro-climatic zone representation, only four representative stations 
were chosen for APSIM simulations from 25 locations with crop 
and climate data. This method made the model site-specific and 
regionally representative. The effects of low moisture on sorghum 
production was studied in Matam, Mbane, Gamadji Sarre, and 
Yang-Yang. APSIM, which simulates how these locations and other 

Table 1: Sorghum crop data for APSIM

Parameter Matam Podor
Sowing date July 2 July 6
Harvest date Oct 15 Oct 20
Plant density 10 plants m-2 10 plants m-2

Row spacing 0.75 m 0.75 m
Initial SW ~30% PAW ~28% PAW
N fertilizer rate 40 kg N ha-1 at sowing 38 kg N ha-1 at sowing

Table 2: Soil properties (Matam, Mbane, Gamadji, Yang-Yang)

Location Soil type pH OM (%) BD (g cm-3) Soil texture
Matam Sandy 6.1 1.0 1.49 Sandy loam
Mbane Sandy 6.4 1.2 1.46 Sandy loam
Gamadji Ferric luvisol 5.8 1.5 1.48 Sandy Clay loam
Yang-Yang Ferric luvisol 5.9 1.1 1.41 Sandy Clay loam

Table 3: 	 Simulated sorghum yields (kg ha⁻¹) under different sowing windows and nitrogen rates at four moisture-stress-prone sites in Senegal. 
The last column shows the relative (%) change versus the site-specific baseline: Matam/Mbane: W1–F1 (40 kg N ha⁻¹); Gamadji 
Sarre: W3–F1; Yang-Yang: W4–F1.

Location Sowing window Fertilizer Rate Yield (kg ha⁻¹) % vs. Baseline

Matam W1 (15 Jun–15 Jul) F1 (40 kg N) 1286 0 (Baseline)
F2 (60 kg N) 1379 +7.2%

Mbane W1 (15 Jun–15 Jul) F1 (40 kg N) 1407 0 (Baseline)
F2 (60 kg N) 1674 +19%

Gamadji Sarre W3 (15 Jul–15 Aug) F1 (40 kg N) 947 0 (Baseline)
F2 (60 kg N) 1145 +20.9%

Yang-Yang W4 (30 Jul–30 Aug) F1 (40 kg N) 900 0 (Baseline)
F2 (60 kg N) 1012 +12.4%

Note: W1 = 15 Jun–15 Jul; W2 = 30 Jun–30 Jul; W3 = 15 Jul–15 Aug; W4 = 30 Jul–30 Aug. F1 = 40 kg N ha⁻¹; F2 = 60 kg N ha⁻¹
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Fig. 2: 	 Spatial distributions of annual and seasonal parameters (a) rainfall (mm) (b) maximum temperature (°C) (c) minimum temperature (°C); 
(d) relative humidity (%) during the rainy season; (e) Rainfall Anomaly Index (RAI) showing wet and dry years; (f) Dry-day index (days 
with rainfall < 1 mm); (g) Wet-day index (days with rainfall ≥ 1 mm).

Crop vulnerability and climate adaptation to moisture stress in Senegal
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climatic conditions affect sorghum yields, was calibrated using soil 
and crop data from the four regions. Table 1 shows soil parameters 
for each study location, whereas Table 2 contains sorghum cultivars, 
sowing dates, and simulated yield data. 

Model calibration and validation

We calibrated APSIM-Sorghum to reproduce observed 
phenology and yield prior to running the sowing-window and 
nitrogen scenarios. Calibration used site-specific crop and soil 
observations available for the study area (e.g., sowing/harvest 
dates, plant density, row spacing, nitrogen at sowing) and station-
level yield records. Model parameters adjusted during calibration 
were limited to cultivar/phenology coefficients (thermal time 
phases, photoperiod sensitivity), radiation use efficiency, and soil 
water parameters (PAWC within measured texture constraints). 
Management inputs (plant density, row spacing, N timing/rate) 
followed field practice at each site. Meteorology (daily rainfall, 
Tmax, Tmin, solar radiation, RH) was bias-corrected using station 
records through an empirical quantile mapping approach applied to 
the gridded datasets used in this study. To avoid over-fitting, we 
split the time series into calibration and validation periods with a 
~70/30 split by years (calibration: earlier years; validation: later 
years), and we also report leave-one-year-out cross-validation 
skill for robustness. Model performance was assessed using 
standard diagnostics computed on independent validation years. 
Performance targets were pre-specified as RMSE ≤ ~300–400 kg 
ha⁻¹, Bias ≤ 15%, R² ≥ 0.6, and NSE ≥ 0 for yield on validation 
data. Site-wise metrics and sample sizes are summarized in Table 3. 
We used these validated parameter sets for all factorial simulations 
of sowing windows (W1–W4) and nitrogen rates (40 vs 60 kg N 
ha⁻¹).  External validation using open-source evidence. Station-level 
observed sorghum yields were not available for the four focal sites, 
so we benchmarked model realism against independent Senegal 
datasets and published model-evaluation studies. National sorghum 
yields from USDA/IPAD (2015/16–2024/25) range 0.87–1.71 t ha⁻¹ 
with a 5-yr average ≈1.40 t ha⁻¹ and a record 1.71 t ha⁻¹ in 2023/24. 
These bounds encompass our simulated yields across windows and 
N rates. Senegal’s statistical system reports an average yield of 
≈1.3 t ha⁻¹, consistent with our baseline scenarios. Peer-reviewed 
Senegal/West Africa simulation studies report grain-yield RMSE 
around 0.21 t ha⁻¹ (210 kg ha⁻¹) and Willmott’s index d = 0.73–0.84 
for sorghum when validated against multi-station observations, 
supporting the plausibility of our modeled variability. Full sources 
are summarized in Table 3. 

Although four canonical sowing windows (W1–W4) 
were defined, simulations used site-feasible windows based on local 
planting calendars and rainfall reliability. W1 (Matam, Mbane), W3 
(Gamadji Sarre), and W4 (Yang-Yang). Finally, yield projections 
were calculated for different climates and management conditions, 
and heat and moisture stress mitigation measures were evaluated to 
sustain sorghum production.

RESULTS AND DISCUSSION

According to the results, sorghum production and growth 
are strongly influenced by input quantities, management techniques, 
and environmental factors. Better biomass and canopy development 

were promoted by areas with ideal rainfall and soil conditions, 
which led to better yields. While delayed planting considerably 
decreased production potential, timely sowing was found to be a 
critical component in reaching maximum productivity. Improved 
yields were a result of nitrogen fertilization’s enhancement of crop 
growth characteristics, especially biomass and leaf area index. The 
robust correlations found between yield, biomass, and LAI highlight 
how crucial balanced crop growth is to optimizing production. 
Overall, the results show that maintaining sorghum output requires 
maximizing planting time and nutrient management while taking 
local climate circumstances into account.

Spatial variation of temperature, humidity, rainfall and RAI

Dry season temperatures are 18°C to 25°C lower than 
cold season’s 18°C to 23°C. Overcast weather elevates lows to 
23–26°C. Max temperature distributions illustrate seasonal and 
regional heat stress. Understanding seasonal high temperatures 
and moisture stress helps. Humidity loss causes crop stress and 
affects productivity. RAI analyses drought-prone areas and rainfall 
variability. Dry-wet day analysis shows heat stress frequency and 
duration. Researchers can assess moisture stress risk and identify 
heat-prone hotspots using spatiotemporal temperature distribution, 
humidity levels, RAI, and dry-wet-day analysis. Identifying places 
allows tailored actions to increase agricultural resilience.

The semi-arid regions such as GambadjiSarre, Matam, 
Mbane, and Yang-Yang have 330–400 mm rainfall, making 
agriculture challenging (Fig. 2a). Variable rainfall increases land-
water competition. Senegalese Tmax (Fig. 2b) range from 25°C in 
Dakar to 36.7°C in Matam and GamadjeSarre with minor variance, 
indicating tropical and hot conditions. So maximum temperatures 
are quite uniform, with the east warmer. In Senegal, minimum 
temperatures vary geographically (Fig. 2c) and average 20°C to 
23°C yearly. It’s 18°C to 25°C in the dry season and 18°C to 23°C 
in the cold. Wet season lows are 23–26°C. These locations typically 
receive minimal rainfall and high RH values, as shown in Fig. 2(d). 
Identifying heat stress locations and creating mitigation techniques 
need understanding these characteristics. As shown in Fig. 2(e), RAI 
is essential for detecting wet, dry, and extreme situations. Gamdji 
Sarre, Matam, Mbane, and Yang-Yang have lower precipitation than 
locations with RAI values above 2, which have higher humidity and 
ample precipitation. Fig. 2 (f & g) shows all regions’ dry and rainy 
days and four regions’ wet day percentages. Comparatively, Matam, 
Mbane, Gamadji Sarre, and Yang-Yang are low. According to the 
graph on the right, dry days grow and wet days decrease inversely. 
It’s obvious from the figure that dry days increase and wet days 
decrease in the four regions.

Sorghum yields and sustainable agricultural practices

The APSIM model simulated sorghum yields in multiple 
climates using moisture-stressed region data. The study examined 
how sowing windows, fertilizer rates, and climate affected sorghum 
yields (Fig. 3). These models optimize climate-change-related 
agricultural productivity and explain moisture stress. W1: June 
15–July 15, W2: June 30–July 30, W3: July 15–August 15, W4: 
July 30–August 30) approximated rainy season planting dates. 
Nitrogen management was studied on sorghum production under 

PEETHANI et al.
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Fig. 3: 	Relationships between sorghum yield, biomass, and leaf area index (LAI) simulated by APSIM under different conditions: (a) across 
locations, (b) across sowing windows (W1: 15 Jun–15 Jul; W2: 30 Jun–30 Jul; W3: 15 Jul–15 Aug; W4: 30 Jul–30 Aug), and (c) 
across nitrogen rates (N1: 40 kg N ha⁻¹; N2: 60 kg N ha⁻¹). Each panel shows pair plots illustrating interrelationships under climate and 
management scenarios for Senegal.

low rainfall using two fertilizer rates: F1 = 40 kg ha-1 and F2 = 60 kg 
ha-1. Sorghum yield, total biomass, and leaf area index (LAI) were 
simulated and pair plots were created to examine their correlations 
under different situations (Fig. 3). Simulations showed considerable 
sowing window and fertilizer effect on sorghum yields. More was 
harvested in W1 and W2 than W3 and W4. In reproductive stages, 
early planting protects sorghum from peak moisture stress. At 
Matam, F2 fertilizer increased W1 yields 29% over F1. The higher 
fertilizer rate raised Mbane W1 production by 20% and was constant 
across planting windows. The use of planting windows to reduce 

stress in Gamadji Sarre boosted W3 yield by 27% for F2 over F1. 

Location significantly affected sorghum performance 
(Fig. 3a). Biomass and LAI boosted yields with rainfall and soil 
fertility. Early (W1 and W2) planting increased biomass and LAI, 
improving grain yields (Fig. 3b). Terminal drought and heat stress 
affected late-sown (W3 and W4) productivity. LAI, biomass, and 
yield increased significantly with 60 kg N ha⁻¹ (N2) compared 
to 40 kg (N1). Yield improved with place and sowing window, 
suggesting interactions. Management (sowing date, nitrogen input) 

Crop vulnerability and climate adaptation to moisture stress in Senegal
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and environment (rainfall, temperature, soil type) substantially 
affect sorghum productivity. Sorghum yields depend on location and 
climate because agro-ecological variables affect biomass and LAI. 
Monsoon planting improves crop establishment and reduces terminal 
stress. Nitrogen fertilizer boosts canopy LAI, photosynthesis, and 
biomass, improving yields. Dryness and nutritional stress from late 
planting and low N reduce yield stability.

Rainfall with 80 % or higher reliability

The reliability assessment demonstrates that operational 
decision-making is sufficient. Long-term average precipitation 
determined AN+ or BN-seasons. In Fig. 4, farmers thought that 80% 
or four out of five years of precipitation could be projected with 
the needed expertise. Adjusting AN/BN season threshold will do 
this. Season categorization can be adjusted to improve precipitation 
forecasts and satisfy farmers. Incorrectly identified seasons are 
reduced by higher AN classification threshold, enhancing AN 
forecast. Reduce false negatives (seasons misclassified as BN) by 
lowering the BN classification standard, improving BN forecasts. 
Climate changes require monitoring rainfall and adjusting AN/
BN limits. Changes in climates will require frequent limit updates. 
Increasing the AN/BN thresholds, including local variables 
like farmers, and monitoring rainfall patterns may improve 
precipitation forecasts, offering farmers better agricultural decision-
making information. Iteratively adjusting AN/BN categorization 
precipitation thresholds and measuring skill scores indicates 
the need of adapting thresholds to local conditions and farmers’ 
expectations. The study demonstrated 80% dependability for AN 
season by assessing reliability with different precipitation levels. 
Changing AN/BN criteria dramatically modified skill ratings, 
showing forecast reliability’s vulnerability to these levels. 80% AN 
seasonal forecast dependability requires less rainfall than long-term 
norms at all four locations. The 24%–28% discrepancy suggests 

below-average AN season rainfall. Rainfall thresholds can predict 
AN season with 80% accuracy in the four regions evaluated, with 
success rates of 82% To 85%. Use precise precipitation forecasts and 
change agricultural operations to boost production and resilience to 
rainfall unpredictability. Food security and livelihoods for regional 
farmers can improve.

CONCLUSIONS

The study using APSIM simulated sorghum production 
figures demonstrates that rainfall variability seriously impacts crop 
yields. In Below Normal (BN) seasons with 80% rainfall confidence, 
all four sites had lower sorghum yields. Matam and Mbane BN 
yields fell 31-36% from Above Normal (AN) yields. The study also 
reveals how fertilizer affects farming. Sometimes crops survived 
BN season with higher fertilization rates. In Gamadji Sarre, BN 
seasons lowered sorghum yields by 33% at lower fertilizer rates 
and 30% at higher rates. These findings highlight the importance 
of precise rainfall projections for agricultural decision-making. 
Rainfall reliability influences climate risk management, agricultural 
decision-making, food security, livelihoods, and sustainable 
agriculture. Communities can enhance their resilience to climate 
variability and achieve prosperity through the understanding and 
application of rainfall data.
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