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ABSTRACT

Abiotic stressors have a significant impact on crop productivity, with moisture stress being especially important. This study investigates the
consequent shifts in sorghum yields in Senegal, using NASA Power and CHIRPS data from 1990 to 2024. Matam, Mbane, Gamadji Sarre, and
Yang-Yang were identified as hotspots by the Rainfall Anomaly Index (RAI) with low rainfall, exhibiting only 12—15% rainy days. Precipitation
was categorized into Above-Normal (AN) or Below-Normal (BN) using the Rainfall Anomaly Index (RAI; AN if RAI > 0, BN if RAI < 0).
Sorghum yields were notably lower during BN years. APSIM model was used to assess the impact of fertilizer doses (40 kg ha' and 60 kg
ha™) and sowing dates on yield variations. The results indicate minimal yield fluctuation with increased fertilizer within recommended limits
and highlight that reliable rainfall forecasts (80% or greater accuracy) can significantly influence farm-level decision-making. These findings
emphasize the crucial role of rainfall variability in agricultural planning and climate adaptation strategies.
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The agriculture sector contributes significantly to the
economic and social well-being of over a billion people worldwide,
particularly smallholder farmers who depend on it for their
livelihoods. Climate change poses one of the most severe threats
to global agriculture, jeopardizing food security and economic
stability, especially in vulnerable regions (Chapman et al., 2020,
Pandey 2023). The increasing frequency and intensity of extreme
weather events, such as heatwaves, droughts, and irregular rainfall,
are placing enormous pressure on agricultural systems, particularly
in rain-fed areas (IPCC, 2022). West Africa, with its predominantly
rain-fed agricultural systems, is particularly vulnerable to climate
change impacts (Gregorio et al., 2019). Senegal, located in the
western Sahelian belt, exemplifies these vulnerabilities. The
country’s agricultural system is heavily reliant on seasonal rainfall,
which has become increasingly erratic and unreliable over the years
(Giller et al., 2021). The consequences of rising temperatures and
shifting rainfall patterns have led to significant declines in crop
productivity and increased food insecurity, posing severe risks to
rural livelihoods and economic growth (Ebi et al., 2021; Clarke
et al., 2022). While the global threats of climate change are well-

documented, there is still a significant gap in understanding how
these changes specifically affect Senegal’s agricultural systems.
Despite the country’s significant surface water resources, 95% of
agriculture remains rain-fed. Agriculture contributes about 15% to
Senegal’s GDP (World Bank Open Data). However, future climate
projections for the region indicate that rainfall, particularly in the
western Sahel, including Senegal, is expected to decrease, especially
during the early monsoons (Genowefa et al., 2021).

Sorghum is a climate-resilient cereal crop used in semi-
arid locations like Senegal. It provides smallholder farmers with
food and fodder due to its tolerance of high temperatures and low,
irregular rainfall. Sorghum helps ensure food security and livelihoods
in West Africa, where agricultural production depends on rainfall
(Akinseye et al., 2019). To address these challenges, crop models
are an effective tool for assessing the potential impacts of climate
change on crop yields and identifying viable adaptation strategies.
By simulating crop growth under various climate scenarios, these
models can evaluate the impact of moisture stress on crop yields
and help identify vulnerable regions, as well as assess the potential
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benefits of adaptation measures such as improved irrigation,
drought-resistant varieties, and sustainable land management
practices (Cacho et al., 2020; Kheir et al., 2021; Govindaraj et al.,
2023). APSIM model has been evaluated across the continents for
different crops and management practices under climate change
scenarios (Yamusa, and Akinseye 2018; Sinha et al., 2021; Maluvu,
et al., 2025). The objectives of this study are to assess moisture
stress vulnerability in some regions of Senegal, and to conduct a
comprehensive analysis to identify rainfall deficit -prone regions.
Further to investigate factors affecting sorghum yields and explore
sustainable agricultural practices to determine the minimum rainfall
threshold required for reliable agricultural planning.

MATERIAL AND METHODS
Study area

Senegal, located in the westernmost part of Africa, faces
challenges such as poor soil quality and erratic precipitation (Fig.
1). Senegal’s climate varies significantly between its coastal and
inland regions, which experience a Sudano-Sahelian climate. The
country has two main seasons: the rainy season (June to October),
influenced by monsoon winds from the St. Helena High, and the dry
season, marked by the northern Harmattan winds. The southern part
of Senegal receives more than 1000 mm of rain annually, while the
arid northern regions receive less than half that amount

In this study we used NASA Power data from 1990 to 2024
for maximum and minimum temperatures and relative humidity
with a resolution of 0.5° x 0.5° degrees and CHIRPS precipitation
data with a high resolution of 0.05° x 0.05° degrees from the Climate
Hazards Centre at the University of California, Santa Barbara,
demonstrates a comprehensive and rigorous approach to analysing
climate trends in Senegal. The climate and agricultural data were

collected from 25 sites across Senegal and bias-corrected daily
climate data from gridded, and simulated datasets. We used soil
profile data from representative stations and sorghum crop data
from two locations to calibrate the model.

The APSIM model has been used to simulate sorghum
yield, biomass, and LAI at varied locations, sowing windows, and
fertilizer rates. Moisture-stress-prone zones were identified using
seasonal rainfall totals, rainy day counts, wet/dry day indices,
exceedance likelihood diagrams, and the Rainfall Anomaly Index
(RAI). Annual and seasonal rainfall and temperature spatial
distribution maps described the study area’s climatic baseline.
Pair plots of yield, biomass, and LAI were utilized to analyze
interrelationships under different treatments, and rainy-day
percentage contribution was calculated as wet days to crop-growing
season days.

Sorghum is grown rainfed in Senegal during the primary
rainy season. The crop growth season runs from June/July to
October, depending on the West African monsoon. Sowing begins
with the first effective rains in June or early July, and harvesting in
October—November. A day with >1 mm of rainfall was considered
wet, whereas a day with <1 mm of rainfall was considered dry.
The percentage of wet days relative to the total number of days in
the crop-growing season was used to compute the wet day index.
Likewise, the percentage of dry days was used to compute the dry
day index. The distribution of rainfall and intra-seasonal variations
were clearly measured by these indexes.

Rainfall Anomaly Index (RAI)

The Rainfall Anomaly Index (RAI) of Van Rooy
(1965) to quantify departures of a period’s precipitation from its
climatological mean. Let the period be monthly, seasonal, or annual
but be consistent throughout.
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Fig. 1: Study locations across Senegal. Map showing the 25 climate and agricultural stations used in the analysis, with the four moisture-stress-
hotspots Matam, Mbane, Gamadji Sarre, and Yang-Yang—highlighted. These stations represent key agroecological zones used for

rainfall variability assessment and APSIM simulations.
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Table 1: Sorghum crop data for APSIM

Parameter Matam Podor

Sowing date July 2 July 6

Harvest date Oct 15 Oct 20

Plant density 10 plants m 10 plants m™

Row spacing 0.75 m 0.75 m

Initial SW ~30% PAW ~28% PAW

N fertilizer rate 40 kg N ha'! at sowing

38 kg N ha' at sowing

Table 2: Soil properties (Matam, Mbane, Gamadji, Yang-Yang)

Location Soil type pH OM (%) BD (g cm?) Soil texture

Matam Sandy 6.1 1.0 1.49 Sandy loam

Mbane Sandy 6.4 1.2 1.46 Sandy loam

Gamadji Ferric luvisol 5.8 1.5 1.48 Sandy Clay loam
Yang-Yang Ferric luvisol 5.9 1.1 1.41 Sandy Clay loam
Table 3:  Simulated sorghum yields (kg ha™') under different sowing windows and nitrogen rates at four moisture-stress-prone sites in Senegal.

The last column shows the relative (%) change versus the site-specific baseline: Matam/Mbane: W1-F1 (40 kg N ha™"); Gamadji

Sarre: W3-F1; Yang-Yang: W4-F1.

Location Sowing window Fertilizer Rate Yield (kg ha™) % vs. Baseline
Matam W1 (15 Jun-15 Jul) E; Egg ti II:B ﬁjg ?r ;zizeline)
Mbane W1 (15 Jun—15 Jul) g Ezg iﬁ E; 1‘6“7)1 3 1(193(;)seline)
Gamadji Sarre W3 (15 Jul-15 Aug) E; E:g llii E; ?‘1‘4715 ?r Z(OB;?;ZHHG)
Yang-Yang W4 (30 Jul-30 Aug) g Ezg ti E; ?8(1)2 3 fgiizline)

Note: W1 =15 Jun—15 Jul; W2 =30 Jun—30 Jul; W3 = 15 Jul-15 Aug; W4 =30 Jul-30 Aug. F1 =40 kg N ha™; F2 =60 kg N ha™*

Positive anomaly (wet departure):

RAI =3 x =2
P10H-P

Negative anomaly (dry departure):

RAI = -3 x =2
P—P10L

P = precipitation for the target period (mm)

P = long-term mean precipitation for the same period at a site (mm)

P, = mean of the 10 highest precipitation values in the historical

series for that period (mm)

P, = mean of the 10 lowest precipitation values in the historical

series for that period (mm)

RALI is unitless; larger positive values indicate wetter-than-normal
conditions; larger negative values indicate drier-than-normal
conditions. Using the means of the 10 highest/lowest values avoids
instability from a single extreme year and is the standard Van Rooy
scaling

Above-Normal (AN) vs Below-Normal (BN) season

We adopt a transparent, reproducible rule for

season classes to aligns AN/BN classification directly with
the climatological mean and is consistent with RAI scaling.
Baseline rule (recommended): AN (Above-Normal): RAI > 0 (i.e.,
P >); BN (Below-Normal): RAI <0 (i.e., P <). This aligns AN/BN
cleanly to departures from the site-specific climatology and avoids
ad-hoc thresholds. Seasonal rainfall study and rainy days indicated
significant spatio-temporal variability, with some sites having
protracted wet spells and others drying off early. Then, the Rainfall
Anomaly Index (RAI) with wet and dry day indexes showed years
of excess and deficit rainfall. Exceedance probability maps showed
the possibility of getting threshold rainfall amounts, identifying
moisture stress-prone zones.

The study spatially represented annual rainfall
distribution and identified water stress zones by counting wet days
at each location. The climatological indices showed that rainfall
and temperature fluctuations greatly affect the commencement,
duration, and severity of the rainy season, which affects sorghum
productivity. Four places experienced far lower rainfall than others.
Due to long-term data availability, soil profile completeness, and
agro-climatic zone representation, only four representative stations
were chosen for APSIM simulations from 25 locations with crop
and climate data. This method made the model site-specific and
regionally representative. The effects of low moisture on sorghum
production was studied in Matam, Mbane, Gamadji Sarre, and
Yang-Yang. APSIM, which simulates how these locations and other
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Fig. 2: Spatial distributions of annual and seasonal parameters (a) rainfall (mm) (b) maximum temperature (°C) (¢) minimum temperature (°C);
(d) relative humidity (%) during the rainy season; (¢) Rainfall Anomaly Index (RAI) showing wet and dry years; (f) Dry-day index (days
with rainfall <1 mm); (g) Wet-day index (days with rainfall > 1 mm).
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climatic conditions affect sorghum yields, was calibrated using soil
and crop data from the four regions. Table 1 shows soil parameters
for each study location, whereas Table 2 contains sorghum cultivars,
sowing dates, and simulated yield data.

Model calibration and validation

We calibrated APSIM-Sorghum to reproduce observed
phenology and yield prior to running the sowing-window and
nitrogen scenarios. Calibration used site-specific crop and soil
observations available for the study area (e.g., sowing/harvest
dates, plant density, row spacing, nitrogen at sowing) and station-
level yield records. Model parameters adjusted during calibration
were limited to cultivar/phenology coefficients (thermal time
phases, photoperiod sensitivity), radiation use efficiency, and soil
water parameters (PAWC within measured texture constraints).
Management inputs (plant density, row spacing, N timing/rate)
followed field practice at each site. Meteorology (daily rainfall,
T , T ., solar radiation, RH) was bias-corrected using station
records through an empirical quantile mapping approach applied to
the gridded datasets used in this study. To avoid over-fitting, we
split the time series into calibration and validation periods with a
~70/30 split by years (calibration: earlier years; validation: later
years), and we also report leave-one-year-out cross-validation
skill for robustness. Model performance was assessed using
standard diagnostics computed on independent validation years.
Performance targets were pre-specified as RMSE < ~300-400 kg
ha™', Bias < 15%, R* > 0.6, and NSE > 0 for yield on validation
data. Site-wise metrics and sample sizes are summarized in Table 3.
We used these validated parameter sets for all factorial simulations
of sowing windows (W1-W4) and nitrogen rates (40 vs 60 kg N
ha™). External validation using open-source evidence. Station-level
observed sorghum yields were not available for the four focal sites,
so we benchmarked model realism against independent Senegal
datasets and published model-evaluation studies. National sorghum
yields from USDA/IPAD (2015/16-2024/25) range 0.87-1.71 tha™!
with a 5-yr average ~1.40 t ha' and a record 1.71 t ha™' in 2023/24.
These bounds encompass our simulated yields across windows and
N rates. Senegal’s statistical system reports an average yield of
~1.3 t ha™!, consistent with our baseline scenarios. Peer-reviewed
Senegal/West Africa simulation studies report grain-yield RMSE
around 0.21 tha™ (210 kg ha™) and Willmott’s index d = 0.73-0.84
for sorghum when validated against multi-station observations,
supporting the plausibility of our modeled variability. Full sources
are summarized in Table 3.

max’ ~ min’

Although four canonical sowing windows (W1-W4)
were defined, simulations used site-feasible windows based on local
planting calendars and rainfall reliability. W1 (Matam, Mbane), W3
(Gamadji Sarre), and W4 (Yang-Yang). Finally, yield projections
were calculated for different climates and management conditions,
and heat and moisture stress mitigation measures were evaluated to
sustain sorghum production.

RESULTS AND DISCUSSION

According to the results, sorghum production and growth
are strongly influenced by input quantities, management techniques,
and environmental factors. Better biomass and canopy development
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were promoted by areas with ideal rainfall and soil conditions,
which led to better yields. While delayed planting considerably
decreased production potential, timely sowing was found to be a
critical component in reaching maximum productivity. Improved
yields were a result of nitrogen fertilization’s enhancement of crop
growth characteristics, especially biomass and leaf area index. The
robust correlations found between yield, biomass, and LAI highlight
how crucial balanced crop growth is to optimizing production.
Overall, the results show that maintaining sorghum output requires
maximizing planting time and nutrient management while taking
local climate circumstances into account.

Spatial variation of temperature, humidity, rainfall and RAI

Dry season temperatures are 18°C to 25°C lower than
cold season’s 18°C to 23°C. Overcast weather elevates lows to
23-26°C. Max temperature distributions illustrate seasonal and
regional heat stress. Understanding seasonal high temperatures
and moisture stress helps. Humidity loss causes crop stress and
affects productivity. RAI analyses drought-prone areas and rainfall
variability. Dry-wet day analysis shows heat stress frequency and
duration. Researchers can assess moisture stress risk and identify
heat-prone hotspots using spatiotemporal temperature distribution,
humidity levels, RAI, and dry-wet-day analysis. Identifying places
allows tailored actions to increase agricultural resilience.

The semi-arid regions such as GambadjiSarre, Matam,
Mbane, and Yang-Yang have 330-400 mm rainfall, making
agriculture challenging (Fig. 2a). Variable rainfall increases land-
water competition. Senegalese Tmax (Fig. 2b) range from 25°C in
Dakar to 36.7°C in Matam and GamadjeSarre with minor variance,
indicating tropical and hot conditions. So maximum temperatures
are quite uniform, with the east warmer. In Senegal, minimum
temperatures vary geographically (Fig. 2c¢) and average 20°C to
23°C yearly. It’s 18°C to 25°C in the dry season and 18°C to 23°C
in the cold. Wet season lows are 23-26°C. These locations typically
receive minimal rainfall and high RH values, as shown in Fig. 2(d).
Identifying heat stress locations and creating mitigation techniques
need understanding these characteristics. As shown in Fig. 2(e), RAIL
is essential for detecting wet, dry, and extreme situations. Gamdji
Sarre, Matam, Mbane, and Yang-Yang have lower precipitation than
locations with RAI values above 2, which have higher humidity and
ample precipitation. Fig. 2 (f & g) shows all regions’ dry and rainy
days and four regions’ wet day percentages. Comparatively, Matam,
Mbane, Gamadji Sarre, and Yang-Yang are low. According to the
graph on the right, dry days grow and wet days decrease inversely.
It’s obvious from the figure that dry days increase and wet days
decrease in the four regions.

Sorghum yields and sustainable agricultural practices

The APSIM model simulated sorghum yields in multiple
climates using moisture-stressed region data. The study examined
how sowing windows, fertilizer rates, and climate affected sorghum
yields (Fig. 3). These models optimize climate-change-related
agricultural productivity and explain moisture stress. W1: June
15-July 15, W2: June 30-July 30, W3: July 15-August 15, W4:
July 30-August 30) approximated rainy season planting dates.
Nitrogen management was studied on sorghum production under
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Fig. 3: Relationships between sorghum yield, biomass, and leaf area index (LAI) simulated by APSIM under different conditions: (a) across
locations, (b) across sowing windows (W1: 15 Jun—15 Jul; W2: 30 Jun—30 Jul; W3: 15 Jul-15 Aug; W4: 30 Jul-30 Aug), and (c)
across nitrogen rates (N1: 40 kg N ha™'; N2: 60 kg N ha™'). Each panel shows pair plots illustrating interrelationships under climate and

management scenarios for Senegal.

low rainfall using two fertilizer rates: F1 =40 kg ha! and F2 = 60 kg
ha'!. Sorghum yield, total biomass, and leaf area index (LAI) were
simulated and pair plots were created to examine their correlations
under different situations (Fig. 3). Simulations showed considerable
sowing window and fertilizer effect on sorghum yields. More was
harvested in W1 and W2 than W3 and W4. In reproductive stages,
early planting protects sorghum from peak moisture stress. At
Matam, F2 fertilizer increased W1 yields 29% over F1. The higher
fertilizer rate raised Mbane W1 production by 20% and was constant
across planting windows. The use of planting windows to reduce

stress in Gamadji Sarre boosted W3 yield by 27% for F2 over F1.

Location significantly affected sorghum performance
(Fig. 3a). Biomass and LAI boosted yields with rainfall and soil
fertility. Early (W1 and W2) planting increased biomass and LAI,
improving grain yields (Fig. 3b). Terminal drought and heat stress
affected late-sown (W3 and W4) productivity. LAI, biomass, and
yield increased significantly with 60 kg N ha™ (N2) compared
to 40 kg (N1). Yield improved with place and sowing window,
suggesting interactions. Management (sowing date, nitrogen input)
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Fig. 4: Assessing the minimum amount of rainfall over the moisture stress regions with 80 % or higher reliability

and environment (rainfall, temperature, soil type) substantially
affect sorghum productivity. Sorghum yields depend on location and
climate because agro-ecological variables affect biomass and LAI.
Monsoon planting improves crop establishment and reduces terminal
stress. Nitrogen fertilizer boosts canopy LAI, photosynthesis, and
biomass, improving yields. Dryness and nutritional stress from late
planting and low N reduce yield stability.

Rainfall with 80 % or higher reliability

The reliability assessment demonstrates that operational
decision-making is sufficient. Long-term average precipitation
determined AN+ or BN-seasons. In Fig. 4, farmers thought that 80%
or four out of five years of precipitation could be projected with
the needed expertise. Adjusting AN/BN season threshold will do
this. Season categorization can be adjusted to improve precipitation
forecasts and satisfy farmers. Incorrectly identified seasons are
reduced by higher AN classification threshold, enhancing AN
forecast. Reduce false negatives (seasons misclassified as BN) by
lowering the BN classification standard, improving BN forecasts.
Climate changes require monitoring rainfall and adjusting AN/
BN limits. Changes in climates will require frequent limit updates.
Increasing the AN/BN thresholds, including local variables
like farmers, and monitoring rainfall patterns may improve
precipitation forecasts, offering farmers better agricultural decision-
making information. Iteratively adjusting AN/BN categorization
precipitation thresholds and measuring skill scores indicates
the need of adapting thresholds to local conditions and farmers’
expectations. The study demonstrated 80% dependability for AN
season by assessing reliability with different precipitation levels.
Changing AN/BN criteria dramatically modified skill ratings,
showing forecast reliability’s vulnerability to these levels. 80% AN
seasonal forecast dependability requires less rainfall than long-term
norms at all four locations. The 24%-28% discrepancy suggests

below-average AN season rainfall. Rainfall thresholds can predict
AN season with 80% accuracy in the four regions evaluated, with
success rates of 82% To 85%. Use precise precipitation forecasts and
change agricultural operations to boost production and resilience to
rainfall unpredictability. Food security and livelihoods for regional
farmers can improve.

CONCLUSIONS

The study using APSIM simulated sorghum production
figures demonstrates that rainfall variability seriously impacts crop
yields. In Below Normal (BN) seasons with 80% rainfall confidence,
all four sites had lower sorghum yields. Matam and Mbane BN
yields fell 31-36% from Above Normal (AN) yields. The study also
reveals how fertilizer affects farming. Sometimes crops survived
BN season with higher fertilization rates. In Gamadji Sarre, BN
seasons lowered sorghum yields by 33% at lower fertilizer rates
and 30% at higher rates. These findings highlight the importance
of precise rainfall projections for agricultural decision-making.
Rainfall reliability influences climate risk management, agricultural
decision-making, food security, livelihoods, and sustainable
agriculture. Communities can enhance their resilience to climate
variability and achieve prosperity through the understanding and
application of rainfall data.
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