
Rainfall prediction plays a critical role in agricultural 
planning, water resource management, and disaster preparedness. 
In agrarian regions like Chhattisgarh, where agriculture forms 
the economic backbone, accurate rainfall forecasting is vital for 
ensuring food security and efficient resource allocation. The state 
encompasses diverse agroclimatic zones, each exhibiting distinct 
rainfall patterns, making region-specific predictive models essential. 

Traditional statistical models, particularly the SARIMA, 
have long been employed for time series forecasting. SARIMA is 
effective in identifying seasonality and linear trends (Box and Jenkins, 
1976). For instance, Dabral and Murry (2017) applied SARIMA to 
forecast rainfall in Northeast India, where it successfully modeled 
monsoon patterns but underperformed during extreme events. 
Several studies have explored enhancing SARIMA’s performance 
by incorporating exogenous climate variables like temperature and 

humidity (Han and Park, 2020; Pandey, 2018). Despite such efforts, 
SARIMA remains limited in capturing highly nonlinear climatic 
behavior (Smith and Taylor, 2023).

To address these limitations, machine learning (ML) and 
deep learning (DL) techniques have gained prominence. Algorithms 
such as Random Forest (RF), Support Vector Machines (SVM), 
and Artificial Neural Networks (ANNs) have shown promise in 
rainfall forecasting (Choi et al., 2021; Martinez and Lee, 2019). 
Among DL models, Long Short-Term Memory (LSTM) networks 
have become popular due to their ability to learn long-term temporal 
dependencies (Hochreiter and Schmidhuber, 1997). Studies by 
Ahmed and Sreedevi (2023) and Rajalakshmi (2023) revealed that 
LSTM models outperform SARIMA in monsoon-heavy regions 
by delivering more accurate forecasts with lower errors. Patro 
and Bartakke (2024) further demonstrated LSTM’s effectiveness 
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This study proposes a hybrid Seasonal Autoregressive Integrated Moving Average (SARIMA)–Bidirectional Long Short-Term Memory (Bi-
LSTM) model for monthly rainfall forecasting in the agroclimatic zones of Chhattisgarh, India. Accurate rainfall prediction is critical for 
agricultural planning and water resource management, especially under increasing climate variability. The analysis utilizes 120 years (1901–
2020) of monthly rainfall data, preprocessed for time series modeling. SARIMA serves as a statistical baseline, effectively capturing linear and 
seasonal trends, while Bi-LSTM, a deep learning model, is adept at learning long-term and non-linear dependencies. The hybrid SARIMA–Bi-
LSTM model leverages the strengths of both approaches to improve forecasting accuracy. Model performance was evaluated using standard 
metrics such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the coefficient of determination (R²). Results show that 
Bi-LSTM outperforms SARIMA, and the hybrid model delivers the best generalization across agroclimatic zones. In the Chhattisgarh Plains, the 
hybrid model achieved the lowest validation RMSE (41.70 mm), MAE (25.93 mm), and the highest R² (0.906). The study highlights SARIMA’s 
limitations in capturing non-linearities and Bi-LSTM’s tendency to overfit, both addressed in the hybrid approach. This work demonstrates the 
effectiveness of hybrid models in enhancing rainfall forecasting and informs climate-resilient agricultural practices.

Keywords: Rainfall prediction, Bi-LSTM, SARIMA, Hybrid modeling, Agroclimatic zones, Deep learning.

ABSTRACT 

Journal of Agrometeorology
(A publication of Association of Agrometeorologists)



333Vol. 27 No. 3

in modeling daily rainfall, though its performance is sensitive to 
dataset size and hyper-parameter tuning (Zhou et al., 2023; Kumar 
and Singh, 2021).

Recent advancements have introduced hybrid modeling 
frameworks that integrate SARIMA and deep learning techniques 
to leverage the strengths of both. Wu and Zhang (2022) and Yadav 
and Verma (2022) proposed SARIMA-LSTM models where 
SARIMA first modeled the linear seasonal components, and LSTM 
captured the residual nonlinear patterns, resulting in reduced 
forecasting errors. Similarly, Singh and Patel (2023), in a meta-
analysis, concluded that hybrid models consistently outperform 
standalone methods in accuracy and robustness. Gupta and Sharma 
(2021) confirmed this by evaluating climate forecasting models 
and highlighting the superior performance of hybrid structures. In 
parallel, Ray et al., (2023) showcased the potential of time-delay 
wavelet neural networks (TDWNN) in forecasting rainfall and 
managing agrometeorological risks.

This study develops monthly rainfall prediction models 
for Chhattisgarh’s agroclimatic zones using SARIMA, Bi-LSTM, 
and a hybrid SARIMA–Bi-LSTM model. The hybrid approach 
first fits SARIMA to capture linear trends and seasonality, then 
trains Bi-LSTM on the residuals to model complex nonlinear 
dependencies. This layered modeling ensures improved accuracy in 
both short- and long-term forecasting. Enhanced rainfall prediction 
supports hydrological planning, climate adaptation, and disaster risk 
reduction. By comparing SARIMA, Bi-LSTM, and their hybrid, 

this study offers valuable insights for researchers, policymakers, 
and agricultural planners working toward sustainable and climate-
resilient development.

MATERIALS AND METHODS

Study area and data 

This study examines monthly rainfall patterns across 
Chhattisgarh’s three agroclimatic zones, Chhattisgarh Plains, Bastar 
Plateau, and Northern Hills (Fig. 1), which exhibit notable seasonal 
variability. The Chhattisgarh Plains, characterized by extensive 
paddy cultivation, experience moderate rainfall. The Bastar Plateau, 
with its undulating topography, receives higher precipitation, while 
the Northern Hills, with rugged terrain, exhibit the highest annual 
rainfall. A 120-year (1901–2020) monthly rainfall dataset from the 
India Meteorological Department (IMD), with a spatial resolution of 
0.25° × 0.25°, was aggregated at the district level to create time series 
for each zone. This extensive dataset supports the development of 
robust models that capture both short-term variations and long-term 
climatic trends (Hyndman and Athanasopoulos, 2018; Shumway 
and Stoffer, 2017).

Data preprocessing

Before model training, the dataset was preprocessed to 
ensure quality and consistency. As the IMD gridded dataset had 
no missing values, imputation was unnecessary. Outliers were 
detected using the z-score method and removed based on their 

Fig. 1: Location map of the study area covering the three agroclimatic zones of Chhattisgarh

NAIDUand CHANDNIHA



334 September 2025

deviation from historical patterns. Due to high seasonal variance, 
Min-Max normalization was applied to scale values between 0 and 
1, preventing extreme values from skewing the training process, 
particularly important for deep learning models sensitive to input 
ranges (Chollet, 2017; Goodfellow et al., 2016).

Dataset structuring for prediction

The dataset was structured into sequences using a sliding 
window approach, where the past 12 months of rainfall data were 
utilized as input features to predict the rainfall for the subsequent 
month. This one-month-ahead forecasting strategy effectively 
captures temporal dependencies within the time series data. To 
ensure unbiased model training and evaluation, the dataset was 
partitioned into training (80%), testing (10%), and validation (10%) 
subsets, following the methodology outlined by Pasini (2020).

Predictive modeling approaches

This study utilizes three models for rainfall forecasting: 
SARIMA, Bi-LSTM, and a hybrid SARIMA-Bi-LSTM. SARIMA, 
a statistical model, captures linear trends and seasonality in time 
series data (Box and Jenkins, 1976; Brown, 2004), optimized here 
using Auto-ARIMA based on the Akaike Information Criterion 
(Hyndman and Athanasopoulos, 2018). It effectively models 
monsoonal patterns with a 12-month seasonal period. Bi-LSTM, a 
deep learning model, captures nonlinear, long-term dependencies 
through memory cells and bidirectional processing (Hochreiter and 
Schmidhuber, 1997; Greff et al., 2017). The hybrid SARIMA-Bi-
LSTM model combines both methods: SARIMA forecasts are fed as 
additional inputs into the Bi-LSTM, enabling it to refine predictions 
by learning residual nonlinear patterns. This integration leverages 
SARIMA’s strength in modeling seasonality and Bi-LSTM’s 
capacity for complex pattern recognition, leading to enhanced 
forecasting accuracy (Zhang, 2003).

Model architectures and hyper-parameter selection

The SARIMA model in this study was designed to 
effectively capture both non-seasonal and seasonal variations in 
monthly rainfall data. The chosen configuration included non-
seasonal parameters: autoregressive order (p) = 1, differencing order 
(d) = 1, and moving average order (q) = 1. Seasonal components 
were also incorporated, with seasonal autoregressive order (P) = 1, 
seasonal differencing (D) = 1, and seasonal moving average (Q) = 
1. The seasonal period (s) was set to 12, corresponding to the annual 
cycle of rainfall. This configuration, denoted as SARIMA(1,1,1)
(1,1,1)[12], was selected based on diagnostic evaluation, and the 
Auto-ARIMA algorithm was employed to confirm the optimal 
parameters.

For the Bi-LSTM component, hyper-parameter tuning 
was performed using grid search on the training dataset. The search 
space included LSTM units (ranging from 50 to 200), dropout rates 
(0.2 to 0.5), learning rates (0.0001 to 0.01), and batch sizes (32, 
64, 128). The optimal configuration identified consisted of 150 
LSTM units and a dropout rate of 0.4, providing the best validation 
performance. The final model architecture comprised two stacked 
bidirectional LSTM layers with tanh activation functions, each 

followed by dropout layers (0.4) to prevent overfitting. A dense 
output layer with linear activation was used to generate rainfall 
predictions. The model was compiled using the Adam optimizer and 
Mean Squared Error (MSE) loss function, with a batch size of 64. 
Early stopping with a patience of 25 epochs was implemented to 
enhance generalization and prevent overfitting.

The proposed hybrid SARIMA–BiLSTM rainfall 
forecasting model follows a structured, multi-stage process. Monthly 
rainfall data are first acquired from a CSV file and normalized using 
MinMaxScaler. The dataset is then split into training, testing, and 
validation subsets. A SARIMA(1,1,1)(1,1,1)[12] model, selected 
using diagnostic evaluation and confirmed via Auto-ARIMA, is 
fitted to the training data to generate forecasts for the entire series. 
These forecasts are normalized and concatenated with the original 
normalized rainfall values, forming a two-dimensional multivariate 
time series that integrates observed and SARIMA-inferred patterns. 
Input-output sequences are prepared using a sliding window of 12 
months to capture temporal dependencies. A stacked Bi-LSTM 
model with 150 units and a 0.4 dropout rate is constructed, followed 
by a dense output layer with linear activation. The model is trained 
using the Adam optimizer and Mean Squared Error loss function, 
with early stopping (patience = 25) to prevent overfitting. Final 
predictions are inverse-transformed to their original scale, and 
model performance is evaluated using appropriate accuracy metrics 
and visualized for interpretation.

Model evaluation and performance metrics

Model performance was evaluated using Root Mean 
Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared 
(R²). RMSE reflects the average prediction error magnitude, MAE 
measures absolute deviations between predicted and actual values, 
and R² indicates the proportion of variance explained by the model. 
These metrics were calculated separately for training, testing, 
and validation datasets to ensure robust assessment. Comparative 
analysis across SARIMA, Bi-LSTM, and the hybrid SARIMA-Bi-
LSTM models identified the most accurate and reliable forecasting 
approach

RESULTS AND DISCUSSION

Rainfall variability across agroclimatic zones

The analysis of monthly rainfall across the three 
agroclimatic zones of Chhattisgarh reveals distinct seasonal and 
spatial variations. Table 1 presents the statistical summary of rainfall 
data, highlighting trends crucial for agricultural planning and water 
resource management. 

The Chhattisgarh Plains exhibit moderate rainfall, with 
the monsoon months (June to September) contributing the majority 
of annual precipitation. July records the highest average rainfall 
(376.4 mm), with a relatively low coefficient of variation (CV) of 
24.2%, indicating consistent monsoonal patterns. In contrast, winter 
and summer months record minimal rainfall with high variability, 
making them unreliable for agricultural activities. The Bastar 
Plateau experiences higher precipitation, particularly in July and 
August (exceeding 400 mm), with moderate CV values (27.8% 

Hybrid SARIMA–Bi-LSTM model for monthly rainfall forecasting in Chhattisgarh
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Fig. 2: Observed versus predicted monthly rainfall using the Hybrid SARIMA Bi-LSTM model for Chhattisgarh Plains, Bastar Plateau, and 
Northern Hills agroclimatic zones during training, testing, and validation periods.

Table 1: Monthly rainfall and CV (%) in three zones of Chhattisgarh 

Month Chhattisgarh Plains Bastar Plateau Northern Hills
Rainfall (mm) CV (%) Rainfall

(mm)
CV (%) Rainfall

(mm)
CV (%)

January 12.8 140.5 7.6 178.4 21.3 131.8
February 18.6 122.0 11.0 188.9 26.2 116.4
March 15.2 139.3 13.0 137.5 17.9 120.4
April 14.2 122.2 35.9 75.0 13.8 111.5
May 18.4 103.5 45.4 71.0 22.3 91.2
June 190.7 50.4 212.6 40.9 198.3 56.1
July 376.4 24.2 399.9 27.8 415.4 26.8
August 371.4 23.0 402.9 29.0 398.3 28.2
September 209.9 39.3 245.4 35.0 221.8 40.8
October 54.8 82.8 93.4 71.2 62.1 82.3
November 9.5 187.7 20.4 130.1 11.7 192.0
December 5.1 224.9 6.3 218.5 6.5 203.5

Table 2: Performance metrics for monthly rainfall prediction models in three zones of Chhattisgarh

Model Dataset Chhattisgarh Plains Bastar Plateau Northern Hills
RMSE MAE R² RMSE MAE R² RMSE MAE R²

Bi-LSTM Train 57.64 36.39 0.853 66.31 42.90 0.825 70.80 44.05 0.817
Test 56.45 35.46 0.826 66.43 42.34 0.823 60.66 36.45 0.820
Validation 49.36 31.82 0.869 63.05 39.33 0.852 59.93 38.20 0.810

SARIMA Train 58.32 37.79 0.849 65.79 42.16 0.828 69.24 45.04 0.825
Test 53.59 31.03 0.844 67.96 44.00 0.817 62.94 39.32 0.804
Validation 49.24 31.99 0.868 67.45 43.60 0.832 59.54 40.35 0.815

Hybrid Train 50.04 31.69 0.889 59.38 38.39 0.859 60.48 37.81 0.866
Test 46.36 27.76 0.883 61.52 40.12 0.848 51.82 30.98 0.869
Validation 41.70 25.93 0.906 59.60 38.00 0.856 51.78 31.50 0.859

NAIDUand CHANDNIHA



336 September 2025

and 29.0%). The early onset of rainfall in April and May provides 
a significant advantage for pre-monsoon crops, supporting early 
sowing and soil moisture conservation. The Northern Hills receive 
the highest rainfall among the three regions, with August recording 
a peak of 810.5 mm. Despite abundant monsoonal rainfall, some 
months display high CV values, indicating erratic precipitation 
patterns largely driven by western disturbances during winter and 
pre-monsoon thunderstorms in summer. A common pattern observed 
across all three zones is the high variability in rainfall during winter 
and summer months, with CV values often exceeding 100%. This 
unpredictability outside the monsoon season underscores the need 
for adaptive water management strategies and resilient agricultural 
planning to mitigate the risks associated with erratic precipitation.

Comparative interpretation of model performance across 
agroclimatic zones

This study systematically evaluates the performance 
of three forecasting models—Bi-LSTM, SARIMA, and a hybrid 
SARIMA-Bi-LSTM—applied to monthly rainfall prediction across 
three distinct agroclimatic zones of Chhattisgarh: the Chhattisgarh 
Plains, Bastar Plateau, and Northern Hills. The comprehensive 
evaluation is based on standard metrics including Root Mean Square 
Error (RMSE), Mean Absolute Error (MAE), and the coefficient of 
determination (R-squared). The detailed performance metrics for 
each model and region are presented in Table 2.

In the Chhattisgarh Plains, characterized by fertile soils 
and heavy dependence on monsoonal rainfall, the Bi-LSTM model 
demonstrated robust performance in modeling non-linear rainfall 
fluctuations. It achieved R-squared values of 0.853, 0.826, and 0.869 
during training, testing, and validation phases, respectively. RMSE 
values were 57.64 (training), 56.44 (testing), and 49.36 (validation), 
with corresponding MAEs of 36.24, 35.98, and 32.47. These values 
reflect Bi-LSTM’s strength in capturing complex rainfall variability. 
The SARIMA model, although slightly less accurate, delivered 
competitive results with R-squared values of 0.849, 0.844, and 
0.868, and RMSEs of 58.32, 53.59, and 49.24. However, it exhibited 
marginally higher MAEs of 37.89, 31.03, and 31.99, indicating a 
modest increase in prediction deviation. The hybrid SARIMA-
Bi-LSTM model showed superior performance in this zone, with 
R-squared values reaching 0.889, 0.883, and 0.906, and significantly 
lower RMSEs of 50.04, 46.36, and 41.70. The MAEs were also the 
lowest among all models, at 31.69, 27.76, and 25.93, highlighting 
the hybrid model’s ability to minimize prediction errors.

In the Bastar Plateau, known for its undulating terrain and 
erratic rainfall patterns, Bi-LSTM produced R-squared values of 
0.825, 0.823, and 0.852, with RMSEs of 66.31, 66.43, and 63.05. 
MAE values ranged from 39.33 to 42.90, slightly elevated due to the 
presence of extreme rainfall events. SARIMA’s performance was 
relatively weaker, with R-squared values of 0.828, 0.817, and 0.832, 
and RMSEs of 65.79, 67.96, and 67.45. The corresponding MAEs 
of 42.16, 44.00, and 43.60 signaled a higher average prediction 
deviation. The hybrid model again led in performance, improving 
R-squared values to 0.859, 0.848, and 0.856 and lowering RMSEs 
to 59.38, 61.52, and 59.60. MAEs also declined to 38.39, 40.12, 
and 38.00, showcasing its robustness even in regions with high 
variability.

In the Northern Hills, marked by steep slopes and complex 
topography, Bi-LSTM attained moderate R-squared values of 0.817, 
0.820, and 0.810. The RMSEs (70.80, 60.66, 59.93) and MAEs 
(44.05, 36.45, 38.20) were comparatively higher, reflecting the 
challenges posed by abrupt rainfall variations. SARIMA marginally 
improved upon these results with R-squared values of 0.825, 0.804, 
and 0.815 and slightly lower RMSEs (69.24, 62.94, 59.54). MAEs 
stood at 45.04, 39.32, and 40.35. The hybrid model, once again, 
outperformed both, with R-squared values of 0.866, 0.869, and 
0.859, RMSEs of 60.48, 51.82, and 51.78, and MAEs of 37.81, 
30.98, and 31.50.

In conclusion, across all three agroclimatic zones, the 
hybrid SARIMA-Bi-LSTM model consistently demonstrated 
superior accuracy, effectively balancing the seasonal trend modeling 
strength of SARIMA and the deep learning capabilities of Bi-
LSTM. This integrated approach significantly reduced prediction 
errors and improved correlation with observed rainfall patterns. 
As evidenced by the results in Table 2, the hybrid model offers a 
reliable and accurate solution for monthly rainfall forecasting, 
with strong potential to support climate-resilient agricultural 
planning and water resource management in the region. The hybrid 
approach, which combines the advantages of SARIMA and Bi-
LSTM, demonstrated enhanced predictive accuracy and stronger 
alignment with observed rainfall across the training, testing, and 
validation phases. A representative output showcasing the hybrid 
model’s performance is provided in Fig. 2. The results confirm the 
model’s ability to produce reliable and smooth forecasts, especially 
during periods of high variability, underscoring its robustness and 
improved performance over the individual models

CONCLUSION

This study demonstrates that while SARIMA effectively 
captures seasonal trends and Bi-LSTM models better accommodate 
nonlinear rainfall patterns, the hybrid SARIMA-Bi-LSTM approach 
offers superior accuracy by integrating the strengths of both. The 
hybrid model provides a more reliable and context-sensitive solution 
for rainfall forecasting across Chhattisgarh’s agroclimatic zones, 
supporting applications in agriculture and water management. 
However, the study is limited by the use of a single climatic variable 
(rainfall), and model performance may vary under rapidly changing 
climate conditions. Future research should focus on incorporating 
additional climatic factors such as temperature, humidity, and 
atmospheric pressure, and exploring advanced deep learning 
architectures like Transformers. The adoption of AI-based hyper-
parameter tuning and ensemble methods could further enhance the 
robustness and adaptability of rainfall prediction model. 
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