
The reference evapotranspiration is defined as the 
evapotranspiration from an ideal crop with a presumed height of 
0.12 m with a surface resistance of 70s m1 and albedo of 0.23, 
closely mimicking the evaporation of a large area of green grass 
of uniform height, actively growing, and well irrigated (Allen et 
al., 1998). Accurate estimation of reference evapotranspiration 
(ET₀) is essential for efficient irrigation planning, water resource 
management, and agrometeorological applications, especially in 
regions facing water scarcity and climatic variability. the critical 
impact of uncertainties in evapotranspiration (ET) estimation 
methods and data sources, emphasizing the need for improved 
accuracy in water resource management (Gloria et al., 2023). 
Traditional empirical methods, while widely used, often fall short 
in capturing the nonlinear and dynamic nature of evapotranspiration 
influenced by multiple meteorological factors. 

In this context, soft computing approaches like the 
Adaptive Neuro-Fuzzy Inference System (ANFIS) offer significant 
advantages by combining the learning capabilities of neural 
networks with the interpretability of fuzzy logic. ANFIS has 
proven effective in ET₀ estimation across diverse climatic zones 
due to its ability to model complex, nonlinear systems with limited 
data. Previous studies have demonstrated its superiority over 
traditional methods such as the Penman-Monteith equation and 
multiple linear regression (Dogan, 2009; Keskin and Terzi, 2009; 
Gavili et al., 2017). The superior performance of machine learning 
models such as ANN, Random Forest, and LGBM in accurately 
estimating reference evapotranspiration using historical climatic 
data (Amit et al., 2024). Moreover, hybridized ANFIS models 
integrated with optimization algorithms like PSO and PCA have 
shown enhanced performance in various applications (Mosavi and 
Mohammad, 2019; Rezaabad et al., 2020). In the Indian context, 

Goyal et al., (2014) and Adnana et al., (2021) highlighted ANFIS’s 
effectiveness in estimating pan evaporation and ET₀ in sub-
tropical climates and data-scarce regions, respectively. An attempt 
has, therefore, been made to develop ANFIS models to predict 
reference evapotranspiration (ET₀) for selected stations of south 
India emphasizing their potential for agrometeorological decision-
making and water resource optimization. 

For the present study, Bangalore (13°0’ N, 77°37’ E, 
elevation 899 m), Bellary (15°09’ N, 76°54’ E, elevation 480m), 
Pattambi (10°48’ N, 76°12’ E, elevation 254m) and Solapur (17°04’ 
N, 75°54’ E, elevation 458m) representing four different climatic 
zones of southern India, were selected. Bangalore represents a 
sub-humid climate; Bellary is hot semi-arid; Pattambi is a humid 
tropical region and Solapur falls in a dry arid and semiarid region. 
The meteorological data comprised of maximum and minimum 
temperature, relative humidity, wind speed, sunshine hours and 
solar radiation for the period of 2001 to 2013 for Bangalore, 
from 1986 to 1995 for Bellary, from 1996 to 2008 for Pattambi 
and from 2002 to 2014 for Solapur were obtained from the Indian 
Meteorological Department (IMD). The variables were pre-
processed cautiously and served as inputs for training and 
validating the ANFIS models.

Reference evapotranspiration (ET0)

The FAO-PM equation recommended for daily reference 
evapotranspiration ET0 (mm day-1) estimation (Allen et al., 1998) 
can be expressed as:
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Short communication

ISSN : 0972-1665 (print), 2583-2980 (online) 
Vol. No. 27 (3) : 381-384  (September - 2025) 

https://doi.org/10.54386/jam.v27i3.3008
https://journal.agrimetassociation.org/index.php/jam

MAHADEVA M.1* and SRIRAM A. V.2

1Department of Civil Engineering, University of Visvesvaraya College of Engineering, Bengaluru, Karnataka, India and Department of Civil 
Engineering, RNS Institute of technology, Bengaluru, Karnataka, India
2Department of Civil Engineering, University of Visvesvaraya College of Engineering, Bengaluru, Karnataka, India
*Corresponding author email: mahadeva.rnsit@gmail.com

Adaptive Neuro-Fuzzy inference system (ANFIS) based models for estimation of 
reference evapotranspiration (ET0)

Article info - DOI: https://doi.org/10.54386/jam.v27i3.3008
Received:17 April 2025; Accepted: 11 June 2025; Published online : 1 September 2025
“This work is licensed under Creative Common Attribution-Non Commercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) © Author (s)”

Journal of Agrometeorology
(A publication of Association of Agrometeorologists)



382 September 2025

where Rn is the net crop surface radiation (MJ m-2 day-1), The soil heat 
flux density (MJ m-2 day-1), T the air temperature at 2 m height (°C), 
u2 the wind speed at 2 m height (m s-1), es the air vapour pressure at 
saturation (kPa), ea the actual vapour pressure (kPa), the slope of the 
vapour pressure curve (kPa °C-1) and is the psychrometric constant 
(kPa °C-1). Allen et al., (1998) presented a set of complete equations 
for calculating the parameters of Equation (1) according to the 
available weather data and time step calculation, forming the P-M 
method. In this research, all days of month to have the ET0 value 
and mean daily ET0 computed using P-M method were taken as the 
measured values used to train and test the ANNs.

Adaptive neuro-fuzzy inference system (ANFIS)

Combining the learning capabilities of the neural 
networks with the knowledge representation of fuzzy logic results 
in ANFIS. An adaptive network, as its name implies, is a network 
structure consisting of nodes and directional links through which 
the nodes are connected. Moreover, parts or all of the nodes are 
adaptive, which means each output of these nodes depends on the 
parameters pertaining to this node and the learning rule specifies 
how these parameters should be changed to minimize a prescribed 
error measure. ANFIS is a multilayer feed-forward network where 
each node performs a particular function on incoming signals. 
Both square and circle node symbols are used to represent different 
properties of adaptive learning. To perform desired input–output 
characteristics, adaptive learning parameters are updated based 
on gradient learning rules. For simplicity, we assume the fuzzy 
inference system under consideration has two inputs, x and y, and 
one output z. suppose that the rule base contains two fuzzy if–then 
rules of Takagi and Sugeno’s type (Fig. 1). 

A hybrid algorithm combining a combination of the 
least squares approach and gradient descent approach is utilized to 
solve this problem. The hybrid algorithm consists of a forward 
pass and a backward pass. The least squares approach (forward 
pass) is employed to optimize the consequent parameters 
with fixed premise parameters. As soon as the optimal consequent 
parameters are determined, the backward pass commences. The 
gradient descent technique (backward pass) is applied to adjust the 
premise parameters that correspond to the fuzzy sets of the input space 
optimally. The output of the ANFIS is determined by using the 
consequent parameters obtained in the forward pass. The output error 
is utilized to adapt the premise parameters through a normal back-
propagation algorithm. This hybrid algorithm has 
been proved to be quite efficient in ANFIS training.

Two sets of ANFIS models were developed. Model 1 
includes a full set of climatic variables viz. maximum temperature 
(Tmax), minimum temperature (Tmin), maximum relative humidity 
(RHmax), minimum relative humidity (RHmin), wind speed (U2) 
and sunshine shine hour (SSH) while Model 2 uses fewer inputs 
(maximum, minimum temperature and wind speed) to simulate 
conditions where limited data are available. This comparison helps 
assess model performance under varying input scenarios. The model 
performance was evaluated using statistical parameters coefficient 
of determination (R2) and the root mean square error (RMSE).

Performance of ANFIS models 

ANFIS Model-1 employed six meteorological input 
variables and was structured with 149 nodes, 10 fuzzy rules, and 
190 parameters (70 linear and 120 nonlinear). It was trained using 
subtractive clustering and a hybrid learning approach over 30 
epochs. ANFIS Model-2, built with a compact structure of 62 nodes 
and 7 to 8 fuzzy rules, utilized only three meteorological inputs. The 
performance results of both models are presented in Table 1.

At Bangalore, Model-1 achieved outstanding performance 
with an RMSE of 0.035 and R² = 0.987 during training, and 0.051 
RMSE with R² = 0.973 during testing. These results reflect high 
precision and generalization capability, indicating that Model-1 
is highly effective in capturing complex interactions influencing 
ET₀ under Bangalore’s climatic conditions. Despite the reduced 
complexity in Model-2, it yielded a training and testing RMSE of 
0.123, with an R² of 0.944 for both sets (Table 1). This consistency 
demonstrates reliable performance, making Model-2 a suitable 
option where computational resources or input data availability are 
limited.

At Bellary, ANFIS Model-1 also showed strong accuracy 
with a training RMSE of 0.059 and R² = 0.960, and testing RMSE 
of 0.060 and R² = 0.950. The model’s consistent performance 
across both sets confirms its robustness in semi-arid zones and 
suitability for tasks requiring precision in ET₀ prediction. ANFIS 
Model-2 presented a noticeable drop in performance, with training 

Fig. 1: 	 Layered flowchart representing the ANFIS architecture 
with Two-Rule Sugeno-Type model for ET₀ prediction
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and testing RMSEs of 0.152 and 0.160, and R² values of 0.890 
and 0.870, respectively (Table 1). While still usable, the reduced 
accuracy suggests that Bellary’s climatic dynamics benefit more 
from the richer input structure of Model-1.

At Pattambi, ANFIS Model-1 demonstrated high 
performance with a training RMSE of 0.052 and R² = 0.950 and testing 
RMSE of 0.062 with R² = 0.943. This indicates strong learning and 
generalization, making Model-1 ideal for ET₀ estimation in humid 
or coastal regions like Pattambi. ANFIS Model-2, however, showed 
comparatively lower performance, with a training RMSE of 0.150 
and R² = 0.850, and testing RMSE of 0.154 and R² = 0.840 (Table 
1). Despite using fewer inputs, it maintained logical consistency and 
moderate accuracy, which may still support real-time applications 
with constrained data availability.

At Solapur, ANFIS Model-1 stood out with an RMSE of 
0.040 and R² = 0.980 during training, and 0.045 RMSE with R² = 
0.970 during testing. These metrics underscore the model’s strength 
in capturing ET₀ variations in arid zones with high precision and 
stability. ANFIS Model-2 showed a more pronounced decrease 
in testing performance, with RMSE increasing to 0.235 and R² 
dropping to 0.900, despite achieving 0.045 RMSE and R² = 0.920 
in training (Table 1). The disparity suggests a risk of overfitting or 
reduced generalizability under Solapur’s more variable climate, 
warranting caution for operational use.

ANFIS Model-1 consistently outperformed Model-2 
across all stations. The improved accuracy can be attributed to the 
use of six meteorological inputs and a more complex fuzzy rule base, 
which enabled better learning of nonlinear climatic interactions. In 
contrast, Model-2, although computationally efficient, displayed 
variability in generalization—especially under arid conditions. 
While Model-1 is recommended for high-precision applications, 
such as precision irrigation or climate modelling, Model-2 is 
preferable in real-time or resource-constrained environments 
where a trade-off between accuracy and computational efficiency 
is acceptable. Both models hold strong potential for supporting 
irrigation planning and sustainable water resource management, 
with future scope for integration with remote sensing and decision-
support systems.
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