
Rice is the staple food for more than half of the world’s 
population and is considered as the most important crop in poor 
developing countries.  Millions of small-scale farmers and landless 
labourers maintain their livelihood by rice cultivation.   It is grown 
in more than hundred countries covering an area of 167.13 million 
hectare. Asia contributes 90.7 % of the world’s production and India 
stands second (140.92 million tonnes), next to China (193.13 million 
tonnes) according to the FAOSTAT (2018). Due to a significant 
increase in India’s food consumption and the worsening impact of 
climate change, problems to food security and local food inequality 
will continue to grow over time in India and thus causing challenges 
in achieving Sustainable Development Goal 2 (SDG-2) (Grebmer 
et al., 2022). 

Weather based models have been used to provide 
dependable forecast of crop yield well in advance and it envisages 

adoption of timely and suitable management strategies to protect 
the crops. Since crop simulation model approach is easier, quicker, 
and less expensive than actual experimentation, it is typically used 
to study how climate variability affects crop productivity (Mishra et 
al., 2020). The crop simulation models are being used for various 
application including the yield forecasting, which is an important 
information in policy planning (Singh, 2023). 

Integration of crop simulation models and remote sensing 
is one out of the prime approaches for forecast of crop yields at regional 
level (Yang et al., 2010; Chaudhari et al., 2010; Shanmugapriya 
et al., 2022). The ready availability of remote sensing products at 
definite intervals and it’s potential to reflect plant features with high 
precision could play a key role in establishing an efficient method 
of estimating preharvest yield. (Noureldin et al., 2013). Patel  
et al., (2023) reported that satellite-derived remote sensing data is the 
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In this study assimilation of MODIS LAI (MOD15A2) into DSSAT-CERES-rice crop simulation model was used to develop advance yield 
estimates of rice crop during pre-harvest stage (F3) in Palakkad district of Kerala during Mundakan (September- January) season 2022-23 and 
2023-24. The free parameters identified as inputs for the DSSAT-CERES-rice crop simulation model were adjusted and optimized sequentially 
during assimilation process until a minimum value of cost function is reached. This helped to minimize the deviation between MODIS- LAI 
and model generated LAI and the yield predicted by the model consequently is taken as the predicted yield. The average predicted yield during 
2022-23 and 2023-24 was 5590 kgha-1 and 5124 kgha-1 respectively. The yield prediction by simulation model integrated with remote sensing 
products had higher accuracy than using simulation model alone during both the years with number of panchayats having the BIAS above ± 10 
per cent reduced from 20 to 12 and 23 to 11 during 2022-23 and 2023-24 respectively. The findings clearly show that incorporating satellite data 
into crop simulation models can produce more accurate rice production forecasts than crop simulation techniques used alone.
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best option for predicting agricultural yield due to its multispectral 
and repeating nature. The majority of these studies have shown 
that assimilating remotely sensed data into crop growth models 
is a viable method for accurately estimating regional agricultural 
yields at wide spatial scales (Ma et al., 2013).  Gumma et al., (2022) 
used the technique of re-parametrization of crop simulation models 
based on the several iterations using remote sensing leaf area index 
(LAI) obtained from Sentinel-2 time series data for yield estimation 
in Indian states of Telangana, Andra Pradesh and Odisha. Kuwata 
et al., (2010) in his study assimilated satellite derived (MODIS) 
LAI and PAR into DSSAT-CERES crop simulation model and 
estimated wheat yield in advance. According to a study by Setiyono 
et al., (2018), integrating MODIS and SAR data into a crop growth 
model can produce yield estimates that accurately reflect the spatial 
distribution of yield in the study area. Thus, integration of MODIS 
Leaf Area Index (LAI) data with the DSSAT model will be a potent 
tool for enhancing the precision of rice yield estimation. With this 
method, growth stages can be dynamically calibrated and validated 
making use of real time satellite satellite-derived data. Better 
geographical and temporal representation of crop conditions is 
made possible by this synergy, which makes the method especially 
helpful for regional agricultural monitoring and decision-making in 
rice-growing regions. 

Therefore, efforts have been made to update one state 
variable ie. LAI in the CERES-Rice crop simulation model using 
MODIS LAI time series data in order to integrate remote sensing 
data with the model to forecast rice yield at different time scales and 
it’s intercomparison with actual production estimates from the field 
to verify crop simulation model results.

MATERIALS AND METHODS

Study area

	 The study focuses on Palakkad one of largest rice-
producing district in Kerala where paddy production is concentrated 

in the blocks of Chittur, Alathur, Kuzhalmannam, Kollengode, 
Nenmara, and Palakkad. Many farmers in this region are engaged 
in rice cultivation in relatively big plots of 5 to 10 acres, which is 
significantly larger than the average size of paddy fields in Kerala 
generally and hence, the study focused on these blocks in Palakkad 
district (Fig. 1).

LAI measurement and MODIS LAI retrieval 

In this study, the leaf area index (LAI) was measured 
from 31 rice fields identified from 31 panchayats under study in 
Palakkad district by the method suggested by Yoshida et al., (1976). 
The MODIS LAI product (MOD15A2) composited every 8 days at 
0.5 km resolution on a sinusoidal grid was downloaded. A total of 
16 scenes were accessed from September 2022 to January 2023 and 
September 2023 to January 2024 which coincides with the Mundakan 
(September to January) rice season of Palakkad. MOD15A2 data 
product was obtained in sinusoidal projection and was converted 
to Universal Transverse Mercator (UTM) co-ordinate system using 
HDF-EOS to GeoTIFF Conversion Tool (HEG) Tool. The imageries 
originally obtained in HDF format were converted to image raster 
files using ArcGIS. The Digital Number (DN) of each pixel is 
multiplied with a constant (0.1) with ‘Raster calculator’ provision in 
ArcGIS. Then the LAI was retrieved using ‘Extract multivalues to 
points’ facility in ArcGIS for 31 rice fields in Palakkad district. The 
peak MODIS-LAI values were validated using LAI data collected 
directly from the above 31 sites and a linear relationship was 
established between the two observations.  

A fish net was developed with 0.5 km x 0.5 km grid size 
and rice pixels were classified from the image based on rice area. 
Pixels having more than 50% area covered with rice were considered 
as rice pixels. Then the LAI for each rice pixel was retrieved and the 
values were averaged panchayat wise. The time series LAI values 
for each panchayat were calculated using the relationship developed 
between MODIS-LAI and ground truth values.

Fig 1: Location map of study area

Integration of CERES-rice model and MODIS LAI for rice yield estimation
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Assimilation of MODIS LAI in DSSAT-CERES–Rice model

Input data, such as cultivar information, soil characteristics, 
crop management data and weather information, already prepared 
were used for DSSAT–CERES–Rice model. Using these input data, 
simulations were carried out with DSSAT and state variables (eg. 
LAI) were generated. The simulated LAI values were compared with 
MODIS derived LAI products, during corresponding crop stages to 
minimize the residual values between them by modifying the input 
parameters. In order to arrive this a set of free input parameters were 
identified and their range is presented in Table 1. 

A cost function was constructed depending on the departure 
of the simulated LAI from MODIS-LAI using the optimization 
algorithm POWELL suggested by Press et al., (1992). A minimum 
value of this cost function denotes a minimum deviation between 
LAI measured (LAIM) and LAI simulated (LAIS). This technique 
helped to skillfully lessen computation time to arrive at a minimum 
residual value. The cost function ‘J’ is given below.

where, LAIM (ti) and LAIS (ti) are measured LAI and simulated LAI 
at time ti, respectively.

Various iterations were carried out to obtain a minimum 
value of the cost function with optimum input parameters. 
Simulations were carried out with the optimized group of input 
parameters; to update the crop yield forecast values and the results 
of iterations gave minimum value for cost function was taken as the 
forecasted yield. The results of yield estimation were compared with 
the crop cutting experiments carried out at various locations in the 
district. The per cent BIAS (PBIAS) was worked out to assess the 
accuracy of prediction using the following formula.  

RESULTS AND DISCUSSION

MODIS-LAI values at 500 m resolution were retrieved 
from MOD15A2 -8day time series product for 31 points in different 
panchayats of Palakkad district and was compared with LAI values 
observed from corresponding rice fields. A linear relationship was 
set between MODIS-LAI and the observed values ie. y=1.168 + 
0.634x, where x is MODIS-LAI and y is the observed LAI. MODIS-
LAI values were obtained at 8-day interval for each rice pixel which 
were already delineated from Sentinel-2 images. This was made 
panchayat wise by superimposing the panchayat boundaries over the 
images. The values thus obtained for each panchayat were corrected 
using the relationship already developed. A relationship developed 
between derived MODIS-LAI and Observed LAI during the crop 
season for one of the locations in Alathur Block is presented in Fig. 
2.

DSSAT-CERES–Rice crop simulation model was run 
for rice variety Uma during 2022-23 and 2023-24 with planting 
date (date of transplanting), row spacing (cm), plant population, 
and nitrogen amount as free input parameters. A cost function was 

created for each iteration depending on residuals between simulated 
LAI and MODIS-LAI. A gradual change was made for the free 
input parameters and iterations were continued till the cost function 
reached a minimum value. A representative optimization process 
for Kuzhalmannam block during 2022-23 is presented in Table 2. 
The last but one row represents the consequent optimized values for 
that block when the cost function reached the least value. Here the 
simulated LAI is influenced by the values of free variables given as 
input to the crop simulation model. For Kuzhalmannam panchayat 
planting at Julian day 270 with a plant population of 58, row spacing 
of 23 cm and Nitrogen amount of 150 kg ha-1 gave the least value 
for cost function (0.932). When the iterations were continued further 
by preponing the planting date there was an increase in the cost 
function. Thus the iterations were stopped with the minimum value 
of cost function.

The results obtained by running DSSAT-CERES-Rice 
model alone and CSM integrated with MODIS- LAI for the two years 
under study is presented in Table 3. During 2022-23 the highest yield 
(6848 kg ha-1) was predicted for Alathur followed by Kannambra 
panchayat (6720 kg ha-1). Estimated yield ranged between 4230 kg 
ha-1 to 6848 kg ha-1 with an average of 5453 kg ha-1. Nalleppilly 
panchayat recorded least yield 4230 kg ha-1. Yield forecast during 
2023-24 revealed that the maximum yield (6350 kg ha-1) is expected 
at Alathur panchayat followed by Kavasseri panchayat (6265kg 
ha-1). The least yield (3163 kg ha-1) was estimated for Thenkurisi 
panchayat and the average yield for the year was 4932 kg ha-1 

Several iterations were carried out using DSSAT CERES-
Rice crop simulation model (CSM) with adjustment of free input 
parameters for rice variety Uma during pre-harvest stage (F3). 
The iterations were continued for various panchayats till the cost 

AJITH et al.

Table 1 : Free input parameters and their range used for iterations in 
DSSAT–CERES-Rice model

Sr. 
No.

Free input parameters Range

1. Planting date (Julian day) 268-278
2. Plant population (plants m-2) 55-65
3. Row spacing (cm) 20-23
3. Nitrogen amount (kg ha-1) 140- 160

Fig. 2 :	 Relationship between MODIS-LAI and Observed LAI 
during 2022-23 in Alathur Block of Palakakd 



282 September 2025

Table 2: 	 Adjustment of free input parameters (LAI) in the optimization process for rice variety Uma in Kuzhalmannam panchayat during 
2022-23
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289 297 305 313 321 329 337 345 353
MODIS- LAI

1.76 2.31 2.45 2.64 3.95 4.21 3.85 3.76 3.52
Simulated LAI

278 65 20.0 150 0.96 1.56 2.28 2.69 3.30 3.43 2.84 2.84 3.32 2.571
278 64 20.0 150 0.98 1.63 2.42 2.92 3.39 3.45 3.01 2.59 3.35 2.488
277 64 20.0 150 0.85 1.53 2.38 2.96 3.51 3.63 3.28 3.42 3.62 2.304
276 60 20.0 150 1.12 1.82 2.25 2.65 3.45 3.58 3.39 3.58 2.08 2.132
275 62 20.0 150 1.10 2.01 2.32 2.34 3.44 3.31 3.20 3.30 2.68 2.009
274 61 20.0 150 1.65 1.79 2.53 3.11 3.43 3.74 3.39 3.01 2.23 1.781
273 60 23.0 150 1.35 1.76 2.49 3.54 3.76 3.92 3.45 3.36 2.89 1.464
270 58 23.0 150 1.43 2.46 2.38 2.72 3.63 3.97 3.74 3.23 2.84 0.932
268 55 23.0 150 1.54 2.26 2.79 3.31 3.62 3.31 2.72 2.26 2.21 2.524

Table 3: 	Actual yield (kg ha-1) and predicted yield (kg ha-1) by CERES- rice model (CSM) alone and CSM integrated with MODIS-LAI during 
Mundakan 2022-23 and 2023-24

Sr. No. Location Actual yield Predicted yield by Actual yield Predicted yield by
CSM  CSM with 

MODIS-LAI 
CSM  CSM with 

MODIS-LAI 
2022-23 2023-24

1 Alathur I 6500 6848 6645 6230 6350 6270
2 Kannambra 6500 6720 6320 5800 5405 5625
3 Kavasseri 5200 5600 5438 6015 6265 6255
4 Kizhakkenchery 5666 4588 4965 6250 6035 6205
5 Pudukkode 4900 5465 5358 4875 5705 5225
6 Tarur 5900 4380 5948 6175 4511 5425
7 Vadakkenchery 4743 5745 5586 5732 5075 5200
8 Erimayur 4250 5340 5220 5375 4789 4910
9 Ayilur 5250 4720 4810 5500 4311 4475
10 Melarkode 5250 5780 5740 5875 4165 4753
11 Vandazy 4250 5145 4848 4125 5375 4393
12 Nenmara 6400 4715 5425 5375 6074 5135
13 Elevenchery 6135 5224 5586 5375 4155 4225
14 Pallassana 5900 5250 6186 5745 4371 4555
15 Kollengode 5600 5900 5830 5450 4495 4705
16 Pattanchery 5400 6485 5850 5530 4693 5601
17 Muthalamada 5000 6295 6150 6125 5380 5290
18 Vadavannur 6000 5150 5120 5415 4335 4410
19 Koduvayur 5800 4648 5165 5825 5305 5610
20 Pudunagaram 6120 5246 5818 5975 4605 5480
21 Peruvemb 5800 5542 5884 5815 5321 5480
22 Perumatty 5250 5128 4980 4875 5213 5113
23 Nallepilly 3750 4230 4626 4125 5354 4983
24 Polpully 6250 4520 5350 5625 5245 5552
25 Chittur 5950 6240 6220 5415 4695 5025
26 Thenkurissi 5450 6020 5925 4055 3163 4370
27 Kuthanoor 5960 5729 5800 5825 4245 4713
28 Kuzhalmannam 5250 5588 5008 5695 4605 5210
29 Peringottukurissi 6050 5840 6230 5615 4245 5093
30 Mathur 5625 5940 5988 5200 4035 4805
31 Kottayi 6250 5020 5286 4075 5383 4770

   Mean 5560 5453 5590 5454 4932 5124

Integration of CERES-rice model and MODIS LAI for rice yield estimation
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Fig. 3: Verification of yield forecast for rice by (a) crop simulation model alone and (b) crop simulation model integrated with MODIS LAI 
during 2022-23

function in relation to simulated LAI and MODIS-LAI reached a 
minimum value. Like F3 prediction obtained by running DSSAT-
CERES-Rice crop simulation model alone, the trend in productivity 
among various panchayats remained the same during both the 
years under study when remote sensing products were integrated 
with crop simulation model. Alathur, Kannambra and Kavasseri 
panchayts recorded high productivity compared to other panchayats 
during both years. The average productivity of blocks during 2022-
23 was higher (5590 kg ha-1) compared to 2023-24 (5124 kg ha-1). 
Since modification of LAI was done in CERES-rice crop simulation 
model with reference to MODIS-LAI the reason for higher yield 
during 2022-23 may be due to the higher MODIS-LAI values 
obtained during the year. 

Inge et al., (2013), opined that LAI is strongly dependent 
on the prevailing site conditions and the management practices. 
Alathur, Kannambra and Kavasseri panchayats had higher values 
of LAImax (Maximum LAI value) during the year compared to 2023-
24. Hashimoto et al., (2023) suggested that the LAI could be used 
for monitoring trends in yield components in rice. According to 
Aschonitis et al., (2014) the correlation between rice grain yield 

and LAImax was significantly high. So higher rice yields reported 
during 2022-23 may be attributed to the higher MODIS-LAI values 
observed during the year. The low yields predicted during 2023-24 
may be as a result of low LAI observed due to insufficient water 
availability, and adverse weather condition as rainfall and irrigation 
water was scarce during the year.

Verification of rice yield prediction

The absolute values of PBIAS of yield predicted for 
31panchayats by crop simulation model alone and integration of 
crop simulation model and remote sensing products are presented 
in Fig 3 & 4. 

From these two figures it is clear that yield prediction 
by integration of remote sensing products into crop simulation 
models gave better accuracy in majority of the panchayats as the 
PBIAS values of this method is low. When the overall accuracy of 
the deviation in yield prediction was assessed yield prediction by 
simulation model integrated with remote sensing products had higher 
accuracy than using simulation model alone during both the years. 

AJITH et al.

Fig. 4: 	Verification of yield forecast for rice by (a) crop simulation model alone and (b) crop simulation model integrated with MODIS LAI 
during 2023-24
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The deviation ranged from -15.42 to 23.36 and -21.39 to 20.8 per 
cent during 2022-23 and 2023-24 respectively in integration method. 
During 2022-23, 20 panchayats had deviation above ± 10 per cent 
in simulation model method while only 12 panchayats had deviation 
above ± 10 per cent in integration method (Fig 3). During 2023-24 
in crop simulation model method 23 panchayats showed deviation 
more than ±10 percent while in integration method the number of 
panchayats with PBIAS values above ±10 percent decreased to 11 
panchayats (Fig 4). The study emphasized that using the DSSAT-
CERES-RICE crop simulation model in conjunction with MODIS-
LAI improved yield prediction accuracy for the Uma rice variety 
compared to using the crop simulation model alone. Doraiswamy 
et al., (2005) and Fang et al., (2008) assimilated MODIS-LAI in 
crop simulation models for yield prediction and obtained promising 
results. Pazhanivelan et al., (2022) predicted rice yields for Cauvery 
delta region of Tamil Nadu by integrating synthetic-aperture radar 
(SAR) based LAI values with DSSAT crop simulation model and 
attained an accuracy of more than 80%. All attempts were aimed 
at minimizing the deviation between simulated LAI and remotely 
sensed LAI by arriving at optimum set of input parameters. 

CONCLUSION

Though crop simulation models can estimate rice yields 
with better precision, this study revealed that by integrating remote 
sensing products with crop simulation models, rice yield estimates 
could be obtained with better accuracy.
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