
Rice is a major staple crop in the Indian state of Madhya 
Pradesh, occupying approximately 3.41 million hectares during the 
2022–23 cropping season. This represents 7.14% of India’s total rice 
cultivation area and contributes 7.02 million tonnes—about 5.17% 
of the nation’s total rice output—with an average productivity of 
2057 kg ha-1 (GoI, 2024). As of 2021–22, nearly 59.86% of the rice-
growing area in the state was under irrigation, reinforcing Madhya 
Pradesh’s status as one of the key rice-producing states in the 
country (GoI, 2024).

To facilitate agricultural planning and decision-making, 
the Government of India routinely releases crop production 
forecasts at different stages of the growing cycle, supplementing 
final yield statistics. As part of its agrometeorological services, the 
India Meteorological Department (IMD) provides three-stage yield 
forecasts—initial (F1) at planting, mid-season (F2), and pre-harvest 
(F3)—for twelve major crops, including rice. These forecasts 
are generated using a combination of statistical approaches and 
dynamic crop simulation models (IMD, 2014). The extended range 

forecasts (ERFs) from IMD includes a 32-day forecast of maximum 
and minimum temperatures (1° × 1°) and rainfall (0.25° × 0.25°), 
derived from IMD’s operational ERF system which is based on the 
CFSv2 coupled model from NCEP and was customised in Indian 
Institute of Tropical Meteorology (IITM) (Sahai et al., 2013, 2015), 
Pune, before its implementation in IMD. The current ERF system 
integrates the fully coupled CFSv2 model with a GFS atmospheric 
model with bias-corrected SST (GFSbc), and utilizes an ensemble 
of 16 members (Pattanaik et al., 2022). Chattopadhyay (2023) has 
demonstrated how the extended range weather forecast i.e., sub-
seasonal forecast can be translated into agromet advisories for the 
farming communities to increase crop production in India. Crop 
simulation models that incorporate soil-crop-climate processes of 
plant growth and that are sensitive to climatic factors can be used 
to quantify impact of climate change on crop production (Singh, 
2023). Harinarayanan et al., (2022) had integrated the ERF forecast 
outputs in the DSSAT model for crop yield prediction for maize 
crop using in Erode district of Tamil Nadu.
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This study evaluates the potential of Extended Range Forecasts (ERFs) in improving rainfed rice yield simulations during three kharif seasons 
(2019–2021) using the DSSAT v4.8 model for Madhya Pradesh. Three weather datasets were evaluated: (1) observed weather, (2) observed + 
ERF + climatological normal and (3) observed + climatological normal. The ERF generated as weekly interval during the crop season with a 
total of 19 initial conditions (IC) were used for ERF dataset. The yields simulated using hybrid datasets (2 & 3) were related with those obtained 
with the observed weather data (1). Results indicated that integrating ERFs during the reproductive and ripening phases improves yield simula-
tions, with the most notable improvements observed in 2021. However, benefits varied across seasons and growth phases. The findings highlight 
the potential of ERFs to enhance seasonal yield forecasts when applied strategically, particularly by bridging observed data and climatological 
normal during key crop phases.
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This study aimed to assess the efficacy of ERFs in 
enhancing the accuracy of rice yield forecasts by appending weekly 
ERFs to observed weather data across key crop growth phases. The 
overarching objective was to evaluate the operational applicability 
of ERFs for agricultural forecasting in rainfed production systems 
of Central India. 

MATERIALS AND METHODS

Study area and data

Ten districts of Madhya Pradesh representing a broad 
agroclimatic gradient spanning the eastern to western parts of the 
state were selected for evaluating the role of IMD’s Extended Range 
Forecasts (ERFs) in rainfed rice yield prediction. The annual normal 
rainfall in these districts varies from 885.5 to 1445.1 mm with 
average rainfall of 1189.4 mm out of which about 90 per cent are 
received during the Southwest monsoon season (June to September) 
(Table 1).  

Observed and extended range forecast (ERF) data

The daily observed weather data, including maximum and 
minimum temperatures at a 1° × 1° spatial resolution and rainfall 
data at high-resolution gridded (0.25° × 0.25°) dataset were obtained 
from the India Meteorological Department (IMD) for the period 
2019–2021 (https://imdpune.gov.in/lrfindex.php). Climatological 
normal obtained from IMD for temperature (1° × 1°) and rainfall 
(0.25° × 0.25°) were also downscaled for each district to serve as a 
baseline for comparison. The extended range forecasts (ERFs) from 
IMD were utilized for 19 initial condition (IC) dates during each 
kharif season, with forecasts generated at weekly intervals (Table 2). 
Each IC date included a 32-day forecast of maximum and minimum 
temperatures (1° × 1°) and rainfall  (0.25° × 0.25°), derived from 
IMD’s operational ERF system. Forecasts are generated weekly 
using Wednesday ICs, with retrospective hindcasts also performed. 

Model inputs and experimental planning

CERES-Rice module embedded in Decision Support 
System for Agrotechnology Transfer model, version 4.8 (DSSAT 
v4.8), was used to simulate the kharif rice yields over study locations. 
This module uses a minimum of readily available daily weather 
data, soil profile characteristics, crop management, and variety-
specific genetic inputs. In Madhya Pradesh, 80% of rice is grown 
in rainfed fields. IR 36, a semi-dwarf rice variety, performed well in 
multi-location tests, and has become popular in areas where rainfall 
begins the 3rd week of June and continues through mid-September 
(Sahu, et al., 1985). This crop variety was selected for the study, as 
its well documented genetic coefficients were available at Agromet 
Advisory Service Division, India Meteorological Department, New 

Delhi, for its use in DSSAT model run (Singh et al., 2005). The 21 
days’ old seedlings were considered for date of transplanting on 10th 
July. Irrigation was not given, i.e., the crop was rainfed. Fertilization 
in the form of urea was fixed as split doses of nitrogen in the ratio of 
50:25:25 (Basal dose: 25th day after planting: 45th day after planting). 

Strategy of planning weather files

For each of the 10 districts, weather file was planned into 
3 categories, comprising of three parameters viz. daily maximum 
temperature (°C), daily minimum temperature (°C) and daily rainfall 
(mm), of every year. These categories were: (i) OBS: Observed 
weather data (OBS); (ii) OBS+ERF+N: Observed weather data 
(OBS) with 32 days extended range forecast (ERF) data beginning 
from all 19 IC dates (Table 2) and climatological normal (N) and 
(iii) OBS+N: Combination of observed weather data (OBS) and 
climatological normal beginning (N) from all 19 IC dates.

The IC dates for the ERFs were selected starting from the 
second fortnight of June in each season to encompass the typical 
rice sowing period. The final IC date was chosen within the first 
fortnight of October. Utilizing ERF data in a moving weekly window 
enabled the evaluation of which forecast issuance date contributes 
most effectively to accurate yield prediction. These IC dates were 
further aligned with specific phenological stages of the rice crop 
to facilitate interpretation of results in the context of crop-weather 
interactions. Consequently, thirty-nine (39) distinct weather datasets 
were generated for each district, grouped into three categories. In 
the present study on rainfed rice, crop phenology analysis revealed 
that panicle initiation occurred between 46–48 days after planting 
(DAP) (24–26 August), heading (anthesis) between 83–88 DAP (30 
September–6 October), and physiological maturity between 122–

Table 2: Initial condition (IC) dates used during three seasons

Season June July August September October
2019 12, 19, 26 3, 10, 17, 24, 31 7, 14, 21, 28 4, 11, 18, 25 2, 9 and 16
2020 10, 17, 24 1, 8, 15, 22, 29 5, 12, 19, 26 2, 9, 16, 23, 30 7 and 14
2021 9, 16, 23, 30 7, 14, 21, 28 4, 11, 18, 25 1, 8, 15, 22, 29 6 and 13

Table 1: District wise normal rainfall of study area 

S. No District Normal rainfall (mm) 
Annual SW monsoon

1 Betul 1081.3 950.4
2 Alirajpur 855.5 840.9
3 Raisen 1237.6 1143.2
4 Shahdol 1226.0 1063.1
5 Rewa 1143.1 1025.3
6 Mandla 1445.1 1289.3
7 Damoh 1170.4 1065.4
8 Panna 1182.9 1069.6
9 Singrauli 1175.6 1041.5
10 Dindori 1376.7 1230.0
Average 1189.4 1071.8
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Table 3: Seasonal rainfall (June-September) and number of rainy 
days over the study area

Year Rainfall (mm) Departure from normal (%) Rainy days
2019 1359.3 +26.8 55.0
2020 1074.1 +0.2 48.8
2021 971.3 -9.4 45.2

129 DAP (9–16 November).

The relationship between stage-wise simulated yield was 
evaluated by computing correlations across three phenological 
phases which were ascertained by grouping of DSSAT-CERES 
defined rice model phases. These are: Vegetative phase comprising 
of emergence to end of juvenile phase (31–35 days), and end of 
juvenile to panicle initiation (30–44 days); Reproductive phase 
comprising of panicle initiation to end of leaf growth (33–40 days), 
and end of leaf growth to beginning of grain filling (6–9 days); 
Ripening phase from grain filling to physiological maturity (27–36 
days).

The Pearson correlation coefficient (r) and Root Mean 
Square Error (RMSE) were computed for simulated yield derived 
from the observed weather (OBS) and compared against values 
obtained using the hybrid weather datasets of (OBS + ERF + N) 
and (OBS + N). 

RESULTS AND DISCUSSION

	 The mean seasonal rainfall during the experimental years 
(2019-2021) in the study region showed that in 2019, the rainfall 
was 26.8% higher than the normal, while in 2021 it was 9.4% less 
than the normal. The number of rainy days varied between 45.2 to 
55.0 days in different years (Table 3).

Correlations between yield predicted by different weather datasets

The correlation worked out between yield simulated 
using actual weather data (OBS) with those simulated hybrid 
data of ERF (OBS + ERF +N) and normal (OBS+N) using 19 
initial conditions (IC) during three rice crop seasons (2019, 2020 
and 2021) are presented in Fig. 1. During 2019 crop season, the 
correlation trends for simulated yields across all IC dates using ERF 
forecast datasets (OBS+ERF+N) and normal (OBS+N) presented 
in Fig. (1a), indicated a notable improvement in correlation from 
the IC date of 31 July 2019 onwards when ERF was incorporated, 
with the highest correlation (r > 0.95**) observed around 7 August 
2019. This suggests that the skill of ERF improves considerably 
during the latter part of the vegetative stage.  During reproductive 
phase with four IC dates (28 August, 4, 11, and 18 September), 
the correlation coefficients were statistically significant (r = 0.938 
to 0.960; p < 0.01). However, ERF-omitted datasets (OBS+N) 
consistently exhibited slightly higher correlation values (r = 0.981 
to 0.990) than ERF-inclusive simulations. This suggests that in 
2019, ERF inclusion did not provide added predictive benefit during 
the reproductive phase (Fig. 1a).  During the ripening phase, the 
correlations for initial condition (IC) dates (25 September; 2, 9, and 
16 October) with both ERF-inclusive and ERF-omitted simulations 
displayed statistically significant positive correlations with the 

observed-weather-based yields (Fig. 1a).

During the vegetative phase of the 2020 crop season (IC 
dates from 10 June to 19 August), significant correlations (p < 0.05) 
between simulated yields from ERF-inclusive datasets and those 
based on observed weather were recorded on three IC dates 10 June (r 
= 0.713), 17 June (r = 0.725*), and 1 July (r = 0.751*). These results 
demonstrate the potential of early-season ERFs to capture spatial 
variability in rainfed rice yield with reasonable accuracy, despite 
higher RMSEs in mid-June and early July (Fig 1b). Across all IC 
dates, yield simulations using ERF-inclusive datasets consistently 
outperformed those generated with non-ERF datasets, both in terms 
of correlation with observed yield and RMSE values (Fig. 1b). This 
underscores the added value of ERFs in enhancing yield prediction 
accuracy during the vegetative growth phase of rainfed rice. Visual 
trends in (Fig. 1b) show variability and generally lower correlation 
during the reproductive phase, which may be attributable to atypical 
intra-seasonal climatic variability or reduced forecast skill during 
the 2020 monsoon. The sporadic correlation significance indicate 
that ERF had limited impact on enhancing reproductive-stage 
predictions in this season. These findings reinforce the potential 
of hybrid ERF datasets as effective inputs for mid-season yield 
forecasting and agrometeorological advisory services, particularly 
in rain-dependent rice-growing regions like central India.

Fig. (1c) illustrates the temporal trend in correlation 
coefficients between simulated rice yields derived from observed 
weather (OBS) and those generated using ERF-inclusive hybrid 
datasets (OBS+ERF+N) and non-ERF (OBS+N) datasets across 
19 initial condition (IC) dates of 2021 rice crop season.  During 
the early vegetative phase, particularly IC dates from 9 June to 30 
June, the incorporation of ERF into the weather datasets did not 
lead to a consistent improvement in yield simulation performance. 
Correlation coefficients remained low to moderate (r = 0.593 on 16 
June and r = 0.659* on 6 June). This reflects the limited predictive 
skill of ERF during early crop development, possibly due to high 
uncertainty in rainfall forecasts during this period and the less 
weather-sensitive nature of crop growth stages. However, beginning 
from 14 July, a notable improvement in performance was observed. 
The correlation between ERF-inclusive yield simulations and OBS-
based simulations strengthened significantly (r = 0.805**), 28 July 
(r = 0.872**), 4 August (r = 0.906**), 11 August (r = 0.930**) and 
18 August (r = 0.926**) indicating that forecasts were beginning 
to capture relevant weather signals affecting crop development. 
During reproductive stage, the results indicated robust and 
consistent improvements in simulated yield prediction through ERF 
integration on all IC dates (25 August, 1, 8, and 15 September) with 
strong positive correlations between ERF-inclusive simulations and 
those driven by observed weather (r = 0.965 to 0.982; p < 0.01). 
ERF-omitted datasets also achieved high correlations (r = 0.963 to 
0.963) (Fig.1c). During ripening phase with all IN dates (22 and 
29 September; 6 and 13 October), both ERF-inclusive and ERF-
omitted simulations displayed statistically significant positive 
correlations with the observed-weather-based yields (Fig. 1c). In 
general, correlation strengths between the two approaches were 
comparable, particularly during the early part of the ripening phase. 
However, as the crop neared physiological maturity, ERF-inclusive 
simulations consistently demonstrated improved alignment with the 
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benchmark yields.

Overall performance of ERF in simulating rice yield 

To comprehensively assess the utility of the extended 
range forecast (ERF) system in enhancing rice yield simulations, a 

phase-wise pooled analysis for three critical crop stages (vegetative, 
reproductive, and ripening) spanning the 2019 to 2021 kharif 
seasons are presented in Table 4. The results demonstrate that 
across all three seasons and crop phases, both ERF-inclusive and 
ERF-excluded datasets showed statistically significant positive 

Fig. 1: 	Correlation coefficients of simulated yield obtained using OBS weather with simulated yield obtained using OBS+ERF+N and OBS+N 
weather datasets for (a) 2019, (b) 2020 and (c) 2021 under all IC dates. 
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correlations with the OBS-based simulations (p < 0.01). During 
the vegetative phase, the performance of ERF-inclusive datasets 
was relatively modest. Correlation coefficients ranged between 
0.408 and 0.626, with RMSE values between 881.8 and 973.5 kg 
ha-1. Interestingly, in 2021, the ERF-excluded dataset exhibited a 
higher correlation (r = 0.754**) and lower RMSE (771.7 kg ha-1) 
than the ERF-inclusive counterpart (r = 0.626**, RMSE = 973.5 kg 
ha-1), suggesting limited predictive value of ERF during early crop 
development stages. This may be attributed to the dominance of 
antecedent soil moisture, sowing practices, and other non-weather 
factors during the vegetative phase, which are less influenced by 
medium-range forecasts.

The inclusion of ERF data led to a marked improvement in 
simulation performance during the reproductive phase. For instance, 
in 2021, the ERF-inclusive dataset achieved a high correlation (r = 
0.962**) and reduced RMSE (424.6 kg ha-1), closely matching the 
performance of the ERF-excluded dataset (r = 0.963**, RMSE = 
295.2 kg ha-1). The 2019 season showed a very strong correlation 
with OBS-based simulations (r = 0.921** for ERF-inclusive and 
r = 0.983** for ERF-excluded), though the RMSE was marginally 
lower for the ERF-inclusive scenario. These findings underscore 
the potential of ERF products in capturing intra-seasonal variability 
and episodic rainfall events critical to reproductive development, 
thereby improving simulation reliability (Table 4).

ERF’s effectiveness peaked during the ripening phase, 
where its incorporation yielded the highest simulation accuracy. 
In 2019, the ERF-inclusive dataset achieved an exceptionally high 
correlation (r = 0.997**) and a minimal RMSE of 80.4 kg ha-1, 
significantly outperforming the ERF-excluded dataset (r = 0.916**, 
RMSE = 393.0 kg ha-1). Similar improvements were noted in 2020 
and 2021, with RMSE reductions of 45.6 kg ha-1 and 92.2 kg ha-

1, respectively, when ERF was incorporated. These results suggest 
that ERF is particularly effective in capturing late-season weather 
variability such as untimely rainfall or dry spells that substantially 
influence grain filling and final yield outcomes.

CONCLUSION

The effectiveness of the extended range forecast (ERF) 
system in simulating rice yield is most pronounced during the 
reproductive phase of crop development. In this critical mid-
season stage, ERF-integrated weather datasets outperformed those 
constructed by appending observed weather with climatological 
normal. Unlike climatological averages, which fail to account for 
short-term atmospheric variability, ERF products capture transient, 
extreme, and intra-seasonal weather events—factors that have 
a substantial impact on yield formation. This enhanced ability to 
reflect real-time atmospheric dynamics results in yield simulations 
that more closely approximate observed field outcomes. These 
findings highlight the strategic value of incorporating ERF into crop 
simulation models such as DSSAT during the reproductive stage, 
when crops are highly sensitive to environmental stressors such as 
temperature spikes, rainfall variability, and humidity shifts. Timely 
and realistic simulations during this phase can significantly improve 
yield forecasting accuracy, supporting better-informed agricultural 
decision-making and early warning systems. In summary, ERF 
offers considerable promise in advancing weather-informed crop 
forecasting, particularly when applied during the reproductive 
phase. Continued investment in model calibration, real-time 
validation, and methodological enhancements will be essential to 
fully unlock its potential for climate-smart agriculture and risk-
informed decision-making at regional and national scales.
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Table 4: Simulated yield along with correlation (r) and RMSE of simulated yield obtained using observed weather with simulated yield obtained 
using ERF-inclusive and OBS+N weather datasets during three phases of the rice (pooled over IC).

Year OBS OBS + ERF + Normal OBS + Normal
Yield 
(kg ha-1)

Yield 
(kg ha-1) Correlation (r) RMSE 

(kg ha-1)
Yield
(kg ha-1) Correlation (r) RMSE

(kg ha-1)
Vegetative phase

2019 3724.6 3448.7 0.461** 881.8 3362.3 0.499** 884.5
2020 3803.8 3740 0.408** 926.6 3793.3 0.463** 837.9
2021 3801.3 3433 0.626** 973.5 3506.1 0.754** 771.7

Reproductive phase
2019 3724.6 3616 0.921** 367.5 3314.3 0.983** 449.5
2020 3803.8 4049.9 0.609** 775.9 3982.6 0.455** 852
2021 3801.3 4094 0.962** 424.6 3798.5 0.963** 295.2

Ripening phase
2019 3724.6 3691.2 0.997** 80.4 3543.9 0.916** 393
2020 3803.8 3793.3 0.959** 212.2 3714.1 0.944** 257.8
2021 3801.3 3835.6 0.985** 193.4 3724.8 0.967** 285.6
** Correlation is significant at the 0.01 level (2-tailed).    *Correlation is significant at the 0.05 level (2-tailed).
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