
Drought is a significant natural hazard, causing extensive 
harm to human life and ecosystems (Sridhara et al., 2021). The 
World Meteorological Organization (WMO 2023) highlights the 
prolonged and unpredictable nature of droughts, making them 
challenging to manage. Drought is categorized into meteorological, 
hydrological, agricultural, and socioeconomic droughts (Wilhite 
and Glantz, 1985; Kanthavel et al., 2023). Various indices have 
been developed for drought assessment, with the Standardized 
Precipitation Index (SPI) being one of the most widely used (McKee 
et al., 1993). SPI is calculated at different timescales, with SPI-6 
and SPI-12 being crucial for monitoring seasonal and long-term 
hydrological droughts, respectively (Sridhara et al., 2021; Lee and 
Dang, 2018).

The eastern region of India, particularly Odisha, has 
experienced recurrent extreme weather events such as heat waves 
and droughts due to its geographical vulnerability (OSDMA, 2016). 

Odisha, with its agrarian economy, heavily depends on agriculture, 
making it highly susceptible to droughts. Forecasting droughts is 
challenging due to their complex nature and varying spatial and 
temporal scales (Hao et al., 2018). Different models have been 
employed for drought prediction, including statistical, dynamical, 
and hybrid models. Statistical models use empirical relationships, 
dynamical models simulate physical interactions, and hybrid 
models integrate both approaches for improved accuracy (Strazzo, 
2019; Panda, et al., 2023). 

Recently, machine learning (ML) techniques have gained 
prominence in hydro-climatic modelling due to their ability to 
capture complex nonlinear relationships. ML algorithms such 
as artificial neural networks (ANN), support vector machines 
(SVM), and extreme learning machines (ELM) have been applied 
in temperature forecasting, rainfall-runoff modeling, and drought 
prediction (Tian et al., 2018; Khan et al., 2024; Pandey et al., 2024). 
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This study assesses the performance of auto-regressive integrated moving average (ARIMA), artificial neural network (ANN), support vector 
machine (SVM) and extreme learning machine (ELM), in predicting meteorological drought with Standardized Precipitation Index (SPI-6 and 
SPI-12) for Kalahandi district, Odisha. Mann-Kendall tests showed no significant trend in SPI value for both shorter and longer scales. Model 
performance was evaluated using correlation coefficient (CC), root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), and mean 
absolute error (MAE) during the training as well as testing phases. For SPI-6, ARIMA performed well during training (NSE = 0.66, RMSE = 
0.60) but showed a decline in testing (NSE = 0.25). Machine learning models, including ELM, SVM and ANN exhibited better consistency, with 
NSE values ranging from 0.45 to 0.47. For SPI-12, ANN delivered the highest accuracy with NSE values of 0.91 and 0.89 and RMSE values 
of 0.31 and 0.29 in training and testing, respectively. Graphical analysis further demonstrated that ANN and SVM outperformed ARIMA by 
effectively capturing nonlinear trends and extreme fluctuations. Overall, machine learning models, particularly ANN and SVM, proved to be 
superior for predicting both long-term (SPI-12) and short-term (SPI-6) precipitation indices, highlighting their effectiveness for accurate drought 
forecasting.
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These methods offer robust tools for addressing the complexities of 
drought forecasting, aiding in effective water resource management 
and mitigation strategies. To address these challenges, the present 
study aims to develop an ML-based model for drought prediction 
using the Standardized Precipitation Index (SPI) at two distinct 
timescales: SPI-6 for shorter durations and SPI-12 for longer 
durations. This study specifically focuses on the Kalahandi district 
of Odisha, ensuring a more localized and effective approach to 
drought forecasting.

MATERIALS AND METHODS

Study area and Data Collection

Kalahandi district is situated in the Tel River sub-
basin of Odisha between Latitude 19°54’04” N and Longitude 
83°09’56”E. The gridded (0.250 X 0.250) rainfall data from 1970 
to 2021 over Kalahandi district of Odisha were collected from 
India Meteorological Department (IMD) and were used for drought 
analysis using standardized precipitation index (SPI).

Standardized precipitation index (SPI)

The SPI analyzed the meteorological drought across 
various timescales, including shorter scales SPI-6 and longer scales 
SPI-12, using monthly precipitation records. Initially, the monthly 
rainfall data is fitted to a suitable probability density function (PDF), 
with the Gamma PDF often identified as the most suitable for SPI 
evaluation in many studies (McKee et al., 1993). Probabilities are 
then calculated from the monthly precipitation records, which are 
subsequently standardized into a standard normal distribution with 
a mean of zero and a unit standard deviation. In this research gamma 
distribution is used for calculation of SPI at various time scales. The 
categorization of drought class is based on criteria given in Table 1

Mann-Kendall trend test

The Mann-Kendall test was used to detect monotonic 
trends in the time series data. As a nonparametric method, it does 
not require assumptions about the underlying data distribution and is 
robust against outliers due to its rank-based nature. The test provides 
the Kendall Tau (τ), a rank correlation coefficient that measures the 
monotony of the trend’s slope, ranging from 1 to -1. A positive 
“τ” indicates a growing tendency, while a negative “τ” indicates 
a declining tendency. This approach ensures reliable detection of 
significant trends over time while minimizing the influence of 
extreme values or non-normal data distributions.

 Prediction of drought using ARIMA and ML techniques

In this research, three machine learning methods, ELM, 
SVM, and ANN, and autoregressive integrated moving average 
(ARIMA) models were employed for predicting drought. ARIMA 
model is widely used statistical technique for time series forecasting 
due to its effectiveness in capturing temporal dependencies 
(Patil et al., 2020). While the ML approach integrates advanced 
models such as extreme learning machine (ELM), support vector 
machine (SVM), and artificial neural networks (ANN), which have 
demonstrated strong capabilities in handling nonlinear relationships 
in hydrological modeling (Suliman, 2024; Deo and Sahin, 2015). 
Following SPI computation, both model types undergo training and 
testing to evaluate their predictive performance. The accuracy of 
these models is assessed using statistical metrics, including Root 
Mean Square Error (RMSE), Correlation Coefficient (CC) and Mean 
Absolute Error (MAE), ensuring a comprehensive performance 
comparison.

Model development and evaluation

For model development, input features were determined 
based on partial correlation function (PACF) and auto correlation 
function (ACF) analyses. All model simulations were conducted 
using ELM, SVM, and ANN algorithms in the “MATLAB 2020” 
environment. The dataset, covering 51 years (1970–2021), was 
divided into two parts: the training phase (1970–2010) and the 
testing phase (2011–2021). After training the proposed networks for 
each machine learning technique, a weight matrix was attained and 
applied over independent inputs of the test set. Finally, the results 
were equated with the actual values obtained from the SPI.

RESULTS AND DISCUSSION

Mann-Kendal test of SPI-6 and SPI-12

The results of the Mann-Kendall test, displayed in the 
Fig. 1, indicate that Kendall’s Tau (τ) value of 0.02, which reflects a 
very small positive trend. However, the p-value of 0.56 suggests that 
this trend is not statistically significant. This means the observed 
slight increase could be attributed to random variability rather than a 
meaningful pattern. In summary, while the visual trend line suggests 
a slight increase in SPI-6 values, the statistical analysis does not 
provide strong evidence to support this trend. The fluctuations in 
the SPI-6 values highlight the variability in precipitation conditions 

Fig. 1: Temporal variation with Mann-Kendal test of SPI-6 and SPI-
12

Table 1: Categorization of different drought class based on SPI

Class type SPI Value
Extremely dry −2.00 and less
Severely dry −1.50 to −1.99
Moderately dry −1.00 to −1.49
Mild dry 0 to -0.99
Normal 0.99 to 0
Moderately wet 1.00 to 1.49
Very wet 1.50 to 1.99
Extremely wet 2.00 and above
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over the given duration. The Kendall’s Tau (τ) value of 0.04 indicates 
a minor positive trend in the SPI-12 values, while the p-value of 
0.10 suggests that this trend is not statistically significant at the 
95% confidence level but approaches moderate significance. This 
implies that although an upward trend in long-term precipitation is 
visually apparent, the statistical evidence is not strong enough to 
confirm it conclusively.

Frequency of drought events at Kalahandi district

The frequency of drought months across different SPI 
timescales reveals variations in drought severity.  From the Table 2 
it was observed that the SPI-1, which represents short-term drought 
conditions, there were 4 extremely dry months, 15 severely dry 
months, 41 moderately dry months, and 247 mild drought months. 
As the timescale increases, the frequency of severe and extreme 
droughts generally rises. SPI-3 recorded 7 extremely dry months, 
30 severely dry months, 54 moderately dry months, and 247 mild 
drought months, indicating a more persistent impact compared 
to SPI-1. SPI-6, which captures seasonal drought trends, showed 

the highest count of extremely dry months (15), along with 33 
severely dry, 56 moderately dry, and 230 mild drought months. In 
the case of SPI-9, representing longer-term drought patterns, there 
were 8 extremely dry, 34 severely dry, 46 moderately dry, and 217 
mild drought months. Similarly, SPI-12, which reflects long-term 
hydrological droughts, recorded 5 extremely dry, 36 severely dry, 48 
moderately dry, and 214 mild drought months. The trend suggested 
that shorter timescales (SPI-1 and SPI-3) exhibit more frequent mild 
droughts, whereas longer timescales (SPI-6, SPI-9, and SPI-12) 
depict a gradual increase in severe drought occurrences, highlighting 
the persistence and intensity of prolonged drought conditions.

Forecasting of SPI-6 and SPI-12 by ML and ARIMA model

The SPI was calculated at shorter and longer scale 
time frames. As shown in Fig. 2 and Fig. 3, PACF was applied to 
determine the optimum lags of the SPI index (Deo and Sahin, 2015). 
The lag values that provide this 95% confidence bound were selected 
as the inputs. This study investigates the input-output relationships 
for predicting the SPI at shorter and longer time scales (SPI-6, and 
SPI-12). Based on the ACF and PACF plots shown in Fig. 2 and Fig. 
3, was observed that for the smaller scale (SPI-6), lags t-1, t-6, and 
t-7 are used as inputs, while for the longer scale (SPI-12), lags t-1 
and t-13 are selected as inputs.

Evaluation of ML models 

It was evident from Table 3 that the models’ performance 
was assessed for both SPI-6 and SPI-12 based on the NSE and 
RMSE values. For SPI-6, ARIMA showed the best training phase 

Table 2: Frequency of different drought month at different class

Time scale Extremely 
dry

Severely 
dry

Moderately 
dry

Mild

SPI-1 4 15 41 247
SPI-3 7 30 54 247
SPI-6 15 33 56 230
SPI-9 8 34 46 217
SPI-12 5 36 48 214

          Fig. 2: Autocorrelation function and partial autocorrelation function for SPI-6 (with 5% significance limits) for Kalahandi district

Fig. 3: Autocorrelation function and partial autocorrelation function for SPI-12 (with 5% significance limits) for Kalahandi district

Machine learning models for drought prediction using SPI in Odisha
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performance with the highest NSE value of 0.66 and the lowest 
RMSE of 0.60, indicating better accuracy in capturing short-term 
dependencies. However, during testing, ARIMA’s NSE dropped 
significantly to 0.25, showing a decline in predictive reliability, 
while other models such as ELM, ANN, and SVM demonstrated 
more consistent testing performance with NSE values of 0.45–0.47 
and RMSE around 0.63. Among these machine learning models, 
SVM and ANN stand out for their ability to adapt to complex and 
dynamic variations, while ELM also shows competitive performance 
with improved responsiveness to rapid changes. Overall, machine 
learning models outperform ARIMA, demonstrating their 
effectiveness in accurately predicting SPI-6. 

For SPI-12 ANN achieved the best performance in both 
training and testing phases from Table 3 recorded the highest NSE 
value of 0.91 and the lowest RMSE of 0.31 during training, and 
maintained strong results in testing with an NSE of 0.89 and RMSE 
of 0.29. ELM and SVM followed closely, with similar testing phase 
results (NSE = 0.88 and RMSE = 0.30). ARIMA also performed 
well for SPI-12, with an NSE of 0.89 and RMSE of 0.34 during 
training, though its testing performance slightly lagged behind other 
models with an NSE of 0.86 and RMSE of 0.34. It was concluded 
that Machine learning models (ANN, SVM, and ELM) outperform 
ARIMA for both SPI-6 and SPI-12 forecasting, with ANN and 
SVM showing the highest accuracy in capturing trends, peaks, and 
nonlinear fluctuations. Patil et al., (2020) compared the ARIMA and 
ANN models for SPI-6 (shorter scale) and long-term forecasting, 
reporting RMSE values of 0.69 and 0.53 for SPI-6, and 0.59 and 
0.35 for the longer scale, respectively, validating the superior 
performance of the ANN model. Similarly, Lalika et al., (2024) 
evaluated the SVM and ELM model, finding NSE values 0.82 and 
0.59 respectively for prediction of SPI-6.

CONCLUSION

This study highlights the comparative performance of 
different forecasting models ARIMA, ANN, ELM, and SVM in 
predicting the SPI values for Kalahandi District, Odisha, specifically 
for short-term (SPI-6) and long-term (SPI-12) periods. The results 
of the Mann-Kendall test indicated no statistically significant 
trends in SPI values, suggesting that the observed slight increases 
in precipitation over time were likely due to random variability. 
In terms of model performance, ARIMA demonstrated strong 

results during the training phase for SPI-6 but showed significant 
limitations during testing, especially in capturing nonlinear trends. 
In contrast, machine learning models, particularly ANN and SVM, 
exhibited superior consistency and predictive power. ANN emerged 
as the most effective model for SPI-12, delivering high accuracy 
both during training and testing phases. For SPI-6, while the 
machine learning models outperformed ARIMA, however, ANN, 
ELM, and SVM displayed comparable performance in capturing 
the complexity of short-term precipitation variability. These results 
have significant implications for improving drought forecasting and 
water resource management, suggesting that integrating advanced 
machine learning models could lead to more robust and dynamic 
forecasting tools for regions prone to drought, such as Kalahandi 
District. 
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Table 3: Evaluation metrics of the model outputs for various timelines during the training and testing periods for Kalahandi 

Model Name Input-output 
feature 

Training periods Testing periods
CC MAE RMSE NSE CC MAE RMSE NSE

SPI-6
ELM SPIt-1, SPIt-6 

and SPIt-7

0.80 0.45 0.61 0.64 0.69 0.44 0.63 0.47
ANN 0.80 0.45 0.62 0.64 0.69 0.44 0.63 0.46
SVM 0.80 0.45 0.63 0.63 0.7 0.44 0.63 0.45

ARIMA 0.81 0.44 0.60 0.66 0.71 0.44 0.62 0.25
SPI-12

ELM SPIt-1 and 
SPIt-13

0.94 0.21 0.34 0.89 0.94 0.19 0.30 0.88
ANN 0.95 0.19 0.31 0.91 0.94 0.18 0.29 0.89
SVM 0.94 0.2 0.35 0.89 0.94 0.18 0.30 0.88

ARIMA 0.94 0.21 0.34 0.89 0.19 0.94 0.34 0.86
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