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ABSTRACT

The potential of quantile mapping (QM) as a tool for bias correction of precipitation extremes
simulated by regional climate models (RCMs) is investigated in this study. We developed an extended
version of QM to improve the quality of bias-corrected extreme precipitation events. The extended version
aims to exploit the advantages of both non-parametric methods and extreme value theory. We evaluated
QM by applying it to a small ensemble of hindcast simulations, performed with RCMs at six different
locations in Europe. We examined the quality of both raw and bias-corrected simulations of precipitation
extremes using the split sample and cross-validation approaches. The split-sample approach mimics the
application to future climate scenarios, while the cross-validation framework is designed to analyse “new
extremes”, that is, events beyond the range of calibration of QM. We demonstrate that QM generally
improves the simulation of precipitation extremes, compared to raw RCM results, but still tends to present
unstable behaviour at higher quantiles. This instability can be avoided by carefully imposing constraints on
the estimation of the distribution of extremes. The extended version of the bias-correction method greatly
improves the simulation of precipitation extremes in all cases evaluated here. In particular, extremes in the
classical sense and new extremes are both improved. The proposed approach is shown to provide a
better representation of the climate change signal and can thus be expected to improve extreme event
response for cases such as floods in bias-corrected simulations, a development of importance in various
climate change impact assessments. Our results are encouraging for the use of QM for RCM precipitation
post-processing in impact studies where extremes are of relevance.
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In recent years, there has been significant effort toward
characterising future regional climate and the estimation of
climate change impacts. Most often, climate scenarios used for
this purpose originate from regional climate models (RCMs),
for example from projects such as ENSEMBLES (van der
Linden and Mitchell, 2009), or the recent CORDEX initiative
(Giorgietal., 2006;2011; Jones et al., 2011). However, RCMs
are still too coarse for direct application in local climate
change impact studies (Mearns et al., 2003). As they are
known to feature considerable errors, particularly regarding
precipitation and their extremes (Jacob et al., 2007; Kjellstrom
et al., 2010; Suklitsch et al., 2010). It requires further
processing before applying as input for models used in climate
change impact analysis such as hydrological and crop
simulation models (Kaur ez al., 2015; Daretal.,2018). Here,
empirical-statistical bias correction techniques play a vital role

(Foley, 2010; Maraun et al., 2010). Different bias correction
approaches are available, and an overview can be found in
ThemeBl et al. (2011), who compared seven different
methods, concluding that quantile mapping (QM) offers the
best performance, whilst a comparison of different
implementations of QM by Gudmundsson et al. (2012) ranked
the empirical (parameter-free) method in first place.

Quantile mapping corrects modelled data by fitting the
cumulative distribution function (CDF) of a historical climate
simulation to the CDF of observations. Thus, QM has
frequently been applied to daily precipitation sums (Hageman
et al., 2011; Gudmundsson et al., 2012; Piani et al., 2010;
ThemeBl et al., 2011; Wilcke et al., 2013) at station scale.
ThemeBl et al. (2012) also examined the performance of QM
at higher quantiles and found that 'errors in the shapes of the
daily precipitation probability density function (PDFs) are
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corrected adequately up to the 99th quantile’. Thus, QM
proved to have a high correction potential for extreme
precipitation, but at the same time has potential for further
improvements, in particular in the context of “new extremes”
i.e., extreme events beyond the range observed in the past.
However, along with global warming, new extremes outside
this range could occur (IPCC, 2001), and they are therefore
highly relevant for adaptation and mitigation strategies.
ThemeBl er al. (2012) suggested a non-parametric
implementation of QM that allows new extremes by
extrapolation of the correction value at the highest and lowest
quantiles of the calibration range. Gutjahr and Heinemann
(2013) analysed a distribution-based application of QM,
which inherently extrapolates beyond the observed range, i.c.,
a combination of a gamma distribution and a generalised
Pareto distribution (GPD) for extreme precipitation, and
concluded that the empirical implementations outperform
distribution-based alternatives. Fitting theoretical
distributions to the data (Dobler and Ahrens, 2008; Piani et al.,
2009) offers one option to extrapolate the correction beyond
the observed range, but this leads to a loss of information when
compared to using the empirical distribution. Furthermore,
there is a limitation in the flexibility of QM, which can be
applied to any meteorological variable as long as empirical
distributions are used. Owing to the above limitations, we
propose a hybrid method that combines the non-parametric
and parametric benefits using a mixed distribution approach.
Similar mixed distribution approaches are already applied in
practice to rainfall parameters. For example, Carreau et al.
(2009) studied rainfall-runoff using a mixed hybrid Pareto
model that is built by stitching a truncated Gaussian with a
generalised Pareto distribution. By considering these
arguments and the results of Gutjahr and Heinemann (2013),
who demonstrated the superiority of non-parametric skill
methods, we applied a theoretical distribution for high
extremes only, but using the empirical distribution for the
majority of the data. Our method integrates the advantages of
non-parametric QM implementations with those of parametric
implementations and takes advantage of extreme value
statistics at the tails of the distribution. The method is flexible
and can be easily adapted to meteorological variables other
than precipitation. We implemented the method for daily
precipitation and compared bias-corrected values to raw RCM
output and a purely non-parametric QM method.

The main objectives of this work are, (a) assessment of
QM general performance in the context of extremes, (b)
identifying inherent limitations of bias correction methods
employed for extremes (particularly new extremes), and (c)
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developing an improved method that extends these limits to
produce more reliable climate scenarios for extremes, using
the combination of non-parametric and parametric
approaches. Cannon et al. (2015) suggest equi-ratio CDF
matching to handle extremes more effectively, although it is
not guaranteed to preserve changes in the mean.

MATERIALS AND METHODS
RCMs and observational data

Daily RCM outputs were derived from the multi-model
dataset of the ENSEMBLES project (van der Linden and
Mitchell, 2009). The ENSEMBLES RCMs have a horizontal
grid spacing of 25 km and cover the European domain. The
ENSEMBLES project provides hindcast simulations, with the
lateral boundary conditions for the RCMs given by the
European Centre for Medium-Range Weather Forecasts 40-
year re-analysis (ERA-40) dataset (Uppala ef al., 2005),
covering the period from 1961 to 2000. Four simulations are
analysed in detail: the RCA3 RCM performed at the
Community Climate Consortium for Ireland, the REGCM3
RCM performed at the Italian Centre for Theoretical Physics
(ICTP), the HIRHAM RCM, performed at the Norwegian
Meteorological Institute, and the RCA RCM, performed at
Sweden's Meteorological and Hydrological Institute.

In-situ station data were provided by the European
Climate Assessment and Dataset Project (ECA&D) (Klok and
Tank, 2009), providing daily precipitation (in mm). Six
stations were selected (Fig.1 and Table 1), which represent an
altitudinal gradient between 199 and 3,100 m above sea level
(ASL) and annual precipitation ranging between 551 to 2500
mm.

The Brocken station, located at an altitude of 1142 m in
Central Germany, experiences extreme weather conditions
with severe storms and low temperatures, even in summer.
Due to its significant elevation compared with the surrounding
terrain, Brocken has the highest precipitation of any point in
northern central Europe (excluding the Alps), with average
annual precipitation (1961-1990) of 1814 mm. From a
climatic and geographical perspective, the station at Zugspitze
lies in the temperate zone at 2,964 m ASL. The Zugspitze
presents a first obstacle to the prevailing westerlies when they
reach the Alps. As a result, moist air accumulates releasing
heavy precipitation in this region. By contrast, in the opposite
direction, a dry, warm, down-slope wind (referred to as a
foehn) occurs in the lee of the mountain range against the
massif. The average annual precipitation on the Zugspitze is
2003 mm. Station Vienna is located in a flat region between the
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Table 1: Geographical and precipitation details of the observational stations used in this study

December 2019

Station Latitude | Longitude | Height = Annual precipitation

(m) (mm)

Col Du Grand St Bernard. +45:52:00 | +07:10:00 | 2472 2368

Switzerland

Brocken, Germany +51:48:00 | +10:37:12 1142 1814

Sonnblick. Austria +47:03:00 | +12:57:00 | 3106 2500

Wien. Austria +48:14:00 | +16:21:00 199 620

Weiden, Germany +49:40:02 | +12:11:09 440 551

Zugspitze. Germany +47:25:20 | +10:59:12 | 2964 2003

north-eastern deviating veins of the Alps, in the north-western
part of the Vienna Basin, at 199 m ASL. Vienna lies within a
transition area of oceanic and humid continental climatic
zones. Precipitation is generally moderate throughout the year,
with an annual rainfall of 620 mm. Station Sonnblick is a very
well-maintained meteorological observatory on top of the
Hoher Sonnblick Mountain at an altitude of 3105 m with a very
long time series and exposed to the free atmosphere. It has an
average annual precipitation of 2500 mm. The station at
Weiden presents a marine, west-coast climate with few
extremes of temperature and significant rainfall throughout
the year. It lies at an altitude of 440 m with an average annual
rainfall of 551 mm. Finally, the station Col du Grand Saint-
Bernard is situated on the ridge of the Valese Alps at an altitude
of 2472 m and receives strong oceanic influences from the
northwest (Pache et al., 1996). Average annual precipitation is
2368 mm.

Evaluation setup

In order to evaluate the performance of QM with regard
to precipitation extremes, a split sample and a cross-validation
approach were applied. In the split sample test, independent
calibration (1961-1980) and validation periods (1981-2000)
were used. This split-sample approach mimics the application
for future climate scenarios, where observations of past
precipitation are used for calibration and applied to simulate
future precipitation. However, this approach made it difficult
to judge the performance of the bias correction method
systematically, because the results are affected by climate
variability and consequently by potential different model error
characteristics between the evaluation and calibration periods.

New extremes are not explicitly specified in the split
sample setup. Due to this, a cross-validation framework with a

Germany
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Fig. 1: Location of the six observation stations used in this study
particular focus on new extremes (out of sample extremes)
was developed, which clearly displays the results for new
extremes and excludes the effects of non-stationarity. In this
frame, we used the 1961-2000 period as a primary dataset for
calibration and evaluation. During the calibration period, it is
neglected the 1% highest precipitation events for each season
from observation, as well as models. In the evaluation, the
neglected 1% of data was included again, and can be regarded
as covering new extremes.

Quantile mapping methods

In this study, a new QM version (QMp) was developed
by combining parametric and nonparametric approaches. The
new method replaces the empirical cumulative density
functions (ECDFs) by combining an ECDF and a GPD for the
high extremes. The new method preserves the major part of the
empirical distribution by this means, but also sensibly
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extrapolates to new extremes at the tail of the distribution. The
classical non-parametric QM method (QMa) is constructed as
follows:

Y= F(:bls(Fmod(X)) (1)

Where, F is an ECDF and F'' is the inverse of the ECDF,
which is named the quantile function. The subscripts obs and
mod indicate distributions that correspond to observed and
modelled data, respectively. The probability of observing X
mm per day (or less) in the model is transferred to the quantile
of the observed ECDF, matching this probability exactly.
Here, Y is the corrected precipitation value. In this non-
parametric method, the correction of new extremes can be
realised by applying the correction value of the highest
observed quantile (Boe et al.,2007) and evaluated by ThemeBl
et al. (2012). Hereafter, this method will be referred to as
QMoao. In the new method (QMB), the distribution is divided
into two parts separated by the 95" percentile (Yang et al.,
2010). Values smaller than the 95" percentile are assumed to
follow the empirical distribution, whereas values larger than
this threshold are assumed to follow a GPD (Egs. (2) and (3)).

FX;0,8)=1-— [1 n X?E]—[l/i] (2)

Ff)ll,s,pem (Fmod'emp (X)), if X < 95t Percentile
Y= 3)

Fobs,cep (Fmod,GPD (X)), if X > 95t Percentile

Three parameters are relevant for the estimation of a
GPD: a scale parameter (), a shape parameter (&), and a
threshold (1), which is set to the 95" percentile in our case. The
GPD s defined on {X: X>0and (1+£X/>0)} with threshold
and excess X = z — u, where z is the observational or model
data. We adopted the maximum likelihood estimation (MLE)
method for estimating the parameters (Cloes, 2001). Palutikof
et al. (1999) found that the MLE method provides stable
parameter estimates over a range of thresholds. It should be
noted that the 95" percentile threshold value is different for
observed and predicted values. The shape parameter & is
responsible for the “weighting” of the tail of the distribution.
There are three distinctive regions of the GPD distribution,
depending on the sign of &: if > 0, the upper tail is unbounded
and is heavy-tailed; if =0, the light-tailed with exponential; if
£ <0, the upper tail is bounded and is shorter-tailed. Because a
GPD with negative shape parameter has an upper bound
(Coles, 2001), it limits the extrapolation of new extremes. We
found that negative values of ¢ often result in unrealistically
high correction values. To mitigate this problem and to ensure
the whole range of possible future extremes is captured, we
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introduced an additional version of QM by setting the lower
bound of ¢to zero, similar to Kallache et al. (2011). In general,
this constraint is suitable for stream flow or precipitation data
(Katz, 2002; Katz et al., 2002; Reiss and Thomas, 1997). The
new method, first without controlling the shape parameter and
second with controlling the shape parameter is hereafter
referred to as QMB0 and QMP1, respectively. The correction
function is defined, as the statistical difference between RCM
output and observations is constructed using equations (1) and
(3). Daily correction functions are constructed for all stations
in the study area, using a sliding window of 30 days and a
similar method (Thrasher et al., 2010; ThemeBl et al., 2012,
Wilcke, 2014). In the sliding window approach, bias
correction is applied on a single day of the year and collected
data points from the surrounding 30 days (+15 days before or
after the day of interest). This approach produces useful data
sets with a better sample size. An example of 20 years
calibration period hold 620 values. The three bias correction
methods are implemented and subsequently compared.

RESULTS AND DISCUSSION
Correction function

As a first step, we compared the correction functions of
QMa, QMpO, and QMB1. For illustration, we are showing the
correction functions of a single station (Brocken) and a single
model (the ICTPREGCM3) for day 15 of each month
throughout the period 1961-2000 (Fig 2). In addition to this,
for new extremes, we investigated the correction functions up
to 10 mm greater than the model maximum precipitation value
(vertical dashed line). Fig 2 demonstrates the unstable
behaviour of bias correction at higher quantiles of the
calibration range (left of the dashed line), with QMa (navy
blue) in January, April, and August, whereas the correction
with QMBO (green) and QMP1 (sky blue) is smoother.
Differences between the QMa and QM methods for new
extremes (right side of the dashed line) are clearly visible (Fig
2), as an extrapolated constant correction value appearing with
QMo (navy blue). Correction values of the QMB (QMBO
(green) and QM1 (sky blue)) were extrapolated by using
extreme value statistics. The main advantage of the new bias
correction method (QMB) is that, it is possible to obtain more
reasonable correction values for new extremes instead of
constant correction values with QMa (right side of the dashed
line). In most cases, QMBO and QM1 yielded identical
results, but unrealistically large correction values were found
for QMO in February and March at precipitation values
beyond the calibration range (right of the dashed line). Here,
QM1 helped to maintain reasonably small correction values
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Fig. 2 : Daily correction functions of the three QM methods
(QMaoa, QMpO, and QMB1) for the ICTP-REGCM3 model for
station Brocken, Germany and the period 1961-2000. The red
vertical line shows the start of the new extremes data.

in this range of “new extremes”. Both QMB0 and QM1 are
identical when the fitted GPD has a positive shape parameter,
which can be observed between April to September.

Quantile—quantile plots (q-q plots)
Split sample test

In the split sample test, independent validation and
calibration periods were used. In this case, the calibration
period was 1961-1980, while the data was validated in the
independent period 1981-2000. The results of the split sample
evaluation are presented as q-q plots, where model values were
plotted against observed values, both are corresponding to the
same probability. These are useful for checking the fit of
external distributions, as they are particularly effective for
highlighting discrepancies in the upper tail of the distribution.
Season-wise q-q plots were created using observational, raw
RCM, and bias- corrected data generated with three QM
methods of the four RCMs and conducted for Weiden station
(Fig. 3ato Fig. 3d). The model values correspond to the x-axis
and the observed values to the y-axis. Uncorrected RCM data
(red) was either overestimates or underestimates extreme
precipitation events in all seasons, and in particular shows
deficiencies for the less extreme precipitation events,
compared to the bias-corrected results. All bias correction
methods are able to rectify this issue, except (to some extent)

December 2019

for the highest extremes. The QMa version (navy blue) shows
slightly larger over/underestimations of the highest quantiles
than the uncorrected RCMs. The QMB versions (green and
sky-blue), also show smaller errors than the uncorrected RCM
for the highest extremes, in most cases. However, the effects of
non-stationarity (which are inherent to the split-sample
evaluation framework) make it hard to judge the performance
ofthe QM implementations in more depth.

Cross validation (new extremes)

As described in Materials and Methods, a cross-
validation framework with a particular focus on new extremes
excluding the effects of non-stationarity was developed. In this
frame, we used the same dataset used for calibration and
evaluation, but neglect 1% of the highest precipitation events
for each season from observation, as well as from the models
during the calibration process. To cross-validate large events,
we used data for the period 1961-2000 for calibration and
neglected 1% data for evaluation. In the evaluation, the
neglected 1% of data was included again and can be regarded
as representing new extremes. Season-wise g-q plots were
created using observational, raw RCM, and bias-corrected
data generated with three QM methods for the Brocken station
for four selected RCMs as shown in Figs.4a to Fig. 4d. All
values above the red dotted line are new extreme events.
Uncorrected RCM data (red) either overestimated or, as in the
case of Brocken station, underestimated all new extreme
precipitation events in all seasons. All the bias correction
methods were capable to produce new extreme events, and
were for the most part better than the raw RCM, with very few
exceptions. The QMPBO0 method (green) showed higher biases
than the uncorrected data in some cases at very highest
quantiles, due to high correction values generated by shape
parameter issues. This deficiency was resolved in QMpI
method by controlling shape parameter. The QM1 (sky-blue)
reproduced new extremes with low biases in all seasons,
compared to QMa and QMO (Fig. 4). For other stations and
models, the results were comparable. An average skill score
over all the stations and models is presented in next section for
amore systematic evaluation.

Ranking and mean absolute error (MAE)

We ranked the raw RCM output and QM
implementations by using a mean absolute error (MAE) skill
score, introduced by Gudmundsson et al. (2012). This score
averages the absolute differences between model and
observation in 0.1 wide probabilities in each interval, with the
upper limit given by x (for example, 0.1 for the 0 to 10
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Fig. 3: g-q plots are shown to compare the daily precipitation distributions of uncorrected RCM data and three QM methods at the
Weiden station for four RCMs (3a, 3b, 3¢, and 3d).
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Fig. 4: q-qplots are shown for comparison of raw RCM output and different QM approaches for new extremes of daily precipitation
at station Brocken, Germany for four RCM models (4a, 4b, 4c, 4d). The red horizontal line shows the start of the new extremes data.
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Fig. Sa & 5b: Relative errors (MAE0.95-1.0, MAE0.99-1.0, MAEO0.9-1.0, and MAEOQ.0-1.0) of the three QM implementations.

a) Split sample test b) Cross Validation test

percentiles). Each interval is sub-divided into 1,000 steps.
Thus, per interval, the absolute differences of 1,000 quantiles
are averaged. Gudmundsson et al. (2012) calculated the
MAE,,, MAE,,, . . ., MAE, , where MAE, evaluates the dry
part and MAE,, the moderately extreme part of the
distribution. Here, we applied the MAE skill score for split
sample and the cross-validation framework and focused on
extremes, not on the lower percentiles. Therefore, we
additionally introduced MAE,,, ,, and MAE,,,; ,,. Here,
MAE,,, ,, focuses on new extremes in cross-validation
framework, because it averages the 99 to 100 percentiles, that
is, the 1% of precipitation events that we defined as new
extremes. Focusing on the highest 5% of precipitation events,
MAE,,; , ,corresponds to the part of the distribution where the
GPD is fitted and represents more moderate extremes than
MAE,,, ,,. All MAE, scores were calculated season-wise for
each station and model. Subsequently, the error (relative to the
uncorrected RCM) was calculated by dividing the
corresponding MAE, of corrected RCM. If relative skill score
is <1, an improvement is achieved. If relative error = 1 there is
no improvement, and > 1 means a worsening has occurred. The
relative errors were first calculated for seasonal for individual
stations and models, and were then averaged over all the
stations and models. In addition, the mean relative errors of all
MAE, were averaged, for exampleMAE,, , , which was used
for ranking of the different bias correction methods by

Gudmundsson etal. (2012).
Spit sample test (extremes)

The season-wise relative errors (MAE,,;,,, MAE,,,,
and MAE,,, ) of the three QM implementations are presented
for the split sample test (Fig. 5a). The results indicate that
during all the seasons, three bias correction methods (QMa,
QMpO0, and QMp1), were able to reduce errors of the RCM
(relative errors below 1), for extremes as well as for the mean
absolute error (MAE,,, ). Further, the QM0 showed a better
skill score than QMa except for summer season (Fig. Sa).
Comparing the skill scores of all seasons, it was found that the
performance of QMB1 was considerably better than QM0 for
representing moderate extremes (MAE,,,,, and MAE,,, ).
The relative error results indicate the following ranking: the
QM1 achieved the best performance, followed by QMp0, and
QMo

Cross validation test (New extremes)

The season-wise relative errors (MAE,,,,,, MAE,,,,
and MAE,, , ) of the three QM implementations (Fig. 5b) are
presented for the cross-validation setup, which provides an
opportunity to evaluate the performance with a particular
focus on new extremes. As described in the previous Section,
the MAE,,, , ,skill score focuses on new extremes. The relative
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errors were below 1 (MAE,,,, ,<1) for all three bias correction
methods except QMa in winter. This means that under certain
conditions, QMa may lead to a degradation of the simulation
of new extremes, although in most cases it improved the
simulation. This deficiency is removed in QMB0 and QMB1,
which significantly improved the simulation of new extremes
during all seasons. In particular, QMB1, which constrains the
shape parameter, was clearly superior in this respect. The
results also showed that, during all seasons the three bias
correction methods were able to reduce errors very near to zero
forthe MAE,,,,. The MAE, ,, ;was particularly low compared
to the split sample test. This demonstrates the effect of non-
stationary error characteristics, which play a role in the split
sample test, but was excluded from the cross-validation test.

In summary, while considering the relative skill scores
for ranking of the methods (Figs. 5a, 5b), all QM
implementations improved simulated precipitation extremes
simulated by RCMs, except for very few cases. The QMf
implementations mostly performed better than the purely
empirical QMa, and in particular QM1 was able to provide a
stable improvement of the RCM output in any of the cases
analysed here.

CONCLUSIONS

In this study, the problems of bias correction for extreme
precipitation events as simulated by RCMs were addressed in
detail as well as one of the most prominent bias correction
methods, QM, was evaluated. A cross-validation framework
with particular focus on new extremes excluding the effects of
non-stationarity was developed, implemented, and tested. The
error characteristics, q-q plots, and relative MAE skill scores
tests showed that, the different QM implementations are very
promising; particularly in a newly proposed method, that
combines a parameter-free approach with extreme value
theory at the tails of the distribution. The detailed analysis
demonstrates that unstable behaviour of QM at higher
quantiles with the purely empirical implementation QMa (but
also with an unconstrained combined implementation QMf1)
leads to a sub-optimal performance in several cases. In some
rare cases, QM even degrades the raw results of RCMs. An
additional constraint in the fit of the GPD to the tail of the
distribution (QMP1) helps to maintain reasonably low
correction values in such cases, and results in a bias correction
method that considerably improves the simulation of
precipitation extremes in all the cases evaluated. This refers to
not only extremes in the classical sense, but also so-called new
extremes, that is, values larger than those observed in the past.
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These findings of the study are encouraging, because the
new method has high skill and is easy to use. This makes it
particularly attractive for RCM precipitation post-processing
for impact studies. The method has the additional advantage
that, it can be applied without specific assumptions about the
distribution of the data. Therefore, it can easily be transferred
to other meteorological parameters.
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