
 Large-scale forest and land fires events recorded in 
several years in recent past highlights the substantial impact of 
forest fires on Kalimantan (Arisman, 2020). A hotspot, defined as 
an area with higher temperatures than its surroundings, serves as 
an early indicator for detecting forest and land fires. Each hotspot 
is represented as a point with specific coordinates, and the total 
number of points, not their area, is counted for analysis. Detection 
is based on satellite data analysis at specific pixels, using algorithms 
that operate effectively under cloud-free atmospheric conditions 
(Giglio et al., 2003). The ASEAN agreement sets a temperature 
threshold of 321°K (48°C) to classify a hotspot. While hotspots 
are essential for assessing fire risk, not all detected hotspot indicate 
active fires; field verification or supplementary data are often 
necessary to confirm actual fire occurrences. The accumulation of 
hotspot in a region correlates with an increased risk of fire (Putra 
et al., 2018). Advances in remote sensing technology enable near 
real-time monitoring, making hotspot valuable indicators for rapid 
surveillance and early fire management over large areas.

 Researchers have studied forest fires using various 
prediction methods such as polynomials and logistic functions 
(Nurdiati et al., 2021), the copula (Najib et al., 2022), and logistic 
regression (Mehta et al., 2019). However, most of these studies 
focus solely on either spatial or temporal aspects, failing to fully 
capture the spatio-temporal characteristics of forest fires. Spatio-
temporal, a technique for analyzing data with spatial and temporal 
dimensions, has been widely adopted by researchers for various 
applications (Ratnasari and Dewi, 2019). Rachmawati et al., 
(2019) used an additive spatio-temporal Bayes approach with 
INLA to predict rainfall, while Hayati et al., (2022) modeled the 
Tweedie compound Poisson Gamma distribution, and Djuraidah 
et al., (2021) applied a generalized Pareto approach for extreme 
values. One of the techniques used in spatio-temporal modeling is 
Conditional Autoregressive (CAR) which was applied by Soroori 
et al., (2019) for accident prediction and Djuraidah et al., (2022) 
for analyzing Tuberculosis spread. The CAR method, known for its 
efficiency, continues to be developed, especially for applications 
in climatology, such as modeling forest and land fires, where 
geographic factors play a significant role.
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Forest and land fires often occur on the island of Kalimantan and have a widespread impact on neighboring countries. One indicator of forest 
and land fires is hotspot. Climate factors play an important role in determining hotspot patterns and trends in a location, which often fluctuate 
and are difficult to predict. This research aims to predict the number of hotspot spatially and temporally in the next month on Kalimantan 
Island and analyze the influence of local climate on hotspot events. The Bayesian Conditional Autoregressive method with Integrated Nested 
Laplace Approximation and optimal weight selection using Getis-Ord G are used to increase prediction accuracy. The distribution of hotspot is 
assumed to follow the Negative Binomial distribution. The research results show that the best model uses an additive approach and interaction 
with explanatory variables with a Deviance Information Criterion value of 97,799.8. Predictions from this model have a Root Mean Square 
Prediction Error of 7.08 and an Average Absolute Prediction Error of 0.63. However, the model still has limitations in predicting extreme 
events. Climatic factors such as low rainfall, long days without rain, high air temperatures, and low humidity contribute significantly to the 
increase in the number of hotspot in Kalimantan.
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 This study addresses this gap by developing a spatio-
temporal prediction model for hotspot in Kalimantan using the CAR 
method and a Bayesian approach with Integrated Nested Laplace 
Approximation (INLA), while examining the influence of climate 
factors. The model aims to provide more accurate predictions and 
support improved early warning systems for forest fire control in 
Kalimantan.

MATERIALS AND METHODS

Data collection

 This study analyzes forest and land fires on Kalimantan 
Island of Indonesia using hotspot data and local climate parameters, 
including rainfall, number of days without rain, air temperature, 
humidity, and wind speed. The data spans from January 2006 to 
December 2020, with a consistent spatial resolution of 0.25° × 0.25° 
and a monthly time scale. Hotspot data were obtained from the 
Indonesian Agency for Meteorology, Climatology, and Geophysics, 
which monitors the number of hotspots identified each month 
across the Asia-Pacific region. Precipitation, air temperature, and 
wind speed data were derived from the Reanalysis 5th Generation 
(ERA5) monthly average data at a single level and rainless days 
was taken from hourly data. Humidity was calculated based on the 
ERA5 monthly average data at the pressure level. All these data were 
obtained from the European Centre for Medium Range Weather 
Forecasts. The variables and units used include precipitation in 
meters, 2m temperature in °K, 10m wind speed in meters/second, 
precipitation in meters, and relative humidity in %.

Bayesian CAR with INLA approach

 The Bayesian method is a statistical approach based on 
Bayes’ theorem, differing from classical methods despite both using 
the likelihood function. In classical estimation, the objective is to 
maximize the likelihood function in relation to the parameters. 
On the other hand, the Bayesian approach considers all unknown 
parameters as random variables governed by prior distributions 
(Ntzoufras, 2009). By applying Bayes’ theorem, the Bayesian 
method produces the joint posterior distribution of the parameters 
(King et al., 2010) and derives estimates from the posterior 
marginal distributions, which are obtained by integrating the joint 
posterior distributions. Although this integration can be complex, 
the Bayesian method effectively addresses these challenges. The 
Bayesian spatio-temporal model in this study refers to the research 
(Knorr-Held, 2000) which is formulated as follows:

1.	 Linear model without explanatory variables

 ηit=β0+ui+vi+(α+δi )×t

2.	 Additive model without explanatory variables

 ηit=β0+ui+vi+γt+ϕt

3.	 Additive and interaction models without explanatory variables

 ηit=β0+ui+vi+γt+ϕt+δit

4.	 Linear model with explanatory variables (full model)

 ηit=β0+x1 β1+x2 β2+x3 β3+x4 β4+x5 β5++ui+vi+(α+δi )×t

5.	 Additive model with explanatory variables (full model)

 ηit=β0+x1 β1+x2 β2+x3 β3+x4  β4+x5 β5+ui+vi+γt+ϕt

6.	 Additive model and interactions with explanatory variables 
(full model)

ηit=β0+x1 β1+x2 β2+x3 β3+x4 β4+x5 β5+ui+vi+γt+ϕt+δit

 yit is the response variable at location and time t , while  ui 
is a spatially structured random effect, vi is a spatially unstructured 
random effect, γt is a temporally structured random effect, ϕt is a 
temporally unstructured random effect, δi is the interaction effect 
of location and time in the linear trend model, and δit is the spatio-
temporal interaction effect in additive model.

 The posterior distributions of parameters in a hierarchical 
Bayesian model can be estimated using the Integrated Laplace 
Approximation (INLA) in R. This technique employs the Laplace 
approximation to approximate the marginal posterior distributions 
of the model’s parameters. INLA is an analytical Bayesian inference 
method, applicable to complex and hierarchical additive models, 
including latent Gaussian variables (Rue et al., 2009).

Model comparison and goodness test

 The deviance information criterion (DIC), introduced 
by Spiegelhalter et al., (2002), is a commonly used metric for 
evaluating model fit in Bayesian frameworks, extending the Akaike 
information criterion (AIC) to Bayesian model comparisons. DIC is 
composed of two parts: one assesses the model fit, while the other 
accounts for model complexity. The DIC is then defined as:

DIC=D  ̅                    +pD

 In addition to the fit model criteria, the model with the 
best prediction will also be seen. The tests used are root mean square 
error prediction (RMSEP) and average absolute prediction error 
(AAPE) to measure the difference between the predicted value and 
the actual value which is defined as follows:

RESULT AND DISCUSSION

Hotspot distribution

 The Cullen-Frey graph in Fig. 1 illustrates the distribution 
of hotspot, identifying the Normal, Negative Binomial, and Poisson 
distributions as appropriate. Fig. 1 showing that the Negative 
Binomial is a better match than the Poisson. Determining the 
hotspot distribution based on the calculation of the variance-
to-mean ratio (VMR), which produces a value of 54.29. A VMR 
value greater than 1 indicates overdispersion, a situation where 
the variance is greater than the mean (Fortin and Dale, 2005). This 
suggests greater variability in the data than predicted by the Poisson 
distribution, typically indicating clustering patterns. In the context 
of forest and land fires, a high VMR suggests that fires tend to occur 
simultaneously in specific locations, making the Negative Binomial 
distribution the most suitable choice for modeling the observed 
overdispersion and clustering.

Hotspots as an indicator of forest and land fires in Kalimantan Island 
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Optimal weight

 Bayesian CAR modeling utilizes spatial dependency 
information to understand and predict agrometeorological 
phenomena, such as fire-prone areas influenced by climatic 
factors. In this study, selecting the optimal spatial weight is crucial 
for accurately modeling the distribution and risk of forest and 
land fires in Kalimantan. Table 1 shows that the inverse distance 
weight produces the highest standard Getis score, reflecting a 
clustering of high observation values. This finding highlights the 
importance of incorporating spatial autocorrelation to enhance 
the accuracy of predictions related to fire-prone zones, thereby 
supporting better mitigation strategies and resource management in 
agrometeorological contexts (Sukmawati et al., 2021).

Spatio-temporal model

 The spatio-temporal model, trained on data from 2006-
2017. After prediction using the INLA method, six models were 
developed. As shown in Table 2, the best model based on the lowest 
DIC value is the spatio-temporal model with additive components 

and interactions with explanatory variables. The RMSEP for each 
model ranges from 5 to 8 hotspots, which is small compared to 
the actual average of 606 hotspots, indicating good predictive 
performance.

 In Bayesian inference, posterior estimation relies on 
95% credible intervals, which are generally determined by the 
0.025 and 0.975 quantiles of the posterior distribution. Unlike 
classical confidence intervals, which assume symmetry, Bayesian 
models, as described by Perepolkin et al., (2023), use quantile 
functions that do not rely on distribution shape assumptions. Since 
the hotspot data follows a skewed Negative Binomial distribution, 
classical confidence intervals are unsuitable, making quantile-based 
approaches crucial for accurate analysis. The estimation results for 
the best model are shown in Table 3.

 The parameter β0 is intercept. In general, the estimated 
mean value gives significant results which are marked by a positive/
negative credible interval or do not pass through zero, except for 
the x4 (wind speed). A negative coefficient for x1 (rainfall) indicates 
more rainfall reduces hotspots, while a positive coefficient for  x2 
(days without rain) suggests longer dry periods increase hotspots. 
Similarly, the positive coefficient for  x3 (air temperature) shows 
higher temperatures lead to more hotspots, and the negative 
coefficient for x5 (humidity) suggests lower humidity increases 
hotspots.

 According to Blangiardo and Cameletti (2015) the 
proportion of spatial and temporal diversity, it can be calculated 
using the formula:

Fig. 1: Cullen and Frey graph

Table 1: Comparison of spatial weights based on standard global 
getis scores

Spatial Weight Z(G)

k - Nearest Neighbor 28.5

Inverse Distance 38.9

Exponential Distance (α=1) 24.3

Exponential Distance (α=2) 24.1

Table 2: Model performance

Model DIC AAPE RMSEP
Linear without explanatory variables 127538.2 1.6 6.8
Additive without explanatory variables 102764.3 1.2 8.3
Additive and interaction without explanatory variables 101971.3 0.9 5.6
Linear with explanatory variables 110627.5 6.7 203.1
Additive with explanatory variables 98914.5 1.2 8.1
Additives and interactions with explanatory variables 97799.8 0.8 4.9

Fig. 2:  Scatter plot between the actual number of hotspot and 
predictions from the best model in 2006

ROHIMAHASTUTI et al
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 The best model shows that 99% of the variation in the 
data is explained by spatial factors, while only 10% is due to 
temporal variation, indicating the data is stable over time but varies 
significantly by location. This stability is likely due to the use of 
monthly data, where the impact of forest and land fires doesn’t 
change much from month to month. Shorter time intervals, like 
hourly or daily data, would likely show more dynamic fluctuations 
and significant impacts.

 Fig. 2 shows most predictions tend to lie above this 

line, indicating that the model generally overestimates the 
number of hotspots. This suggests that the model is capable of 
capturing extreme spatial patterns, although there is a tendency for 
overprediction in some locations. Spatially, the model exhibits a 
similar pattern to the actual data, although the predictions tend to 
be higher. Fig. 3 displays the comparison between the distribution 
of actual hotspots and the predicted results on a monthly basis, 
successfully capturing the main spatial patterns. However, in some 
months, the predictions exceed the actual values, which may be 
attributed to overestimation in areas with a high fire risk.

Model evaluation

 Model evaluation utilized testing data from 2018-2020 to 
assess performance. The results indicate that the prediction errors 
RMSEP of 7.08 and AAPE of 0.63 are similar to those from the 
training data, suggesting consistent model quality. 

 Fig. 4 shows that most of the data points are concentrated 
near the diagonal line for smaller hotspot counts (below 1,000), 
indicating that the model performs reasonably well for these cases. 
However, as the actual number of hotspots increases above 2,000, 
the predictions begin to deviate significantly below the diagonal 
line, showing a tendency of the model to underpredict the actual 
values. There is also an extreme outlier with an actual hotspot 
count exceeding 8,000, where the model’s prediction remains 

Fig. 3: Hotspot distribution map from the best model in 2006 for each month (A) actual (B) predicted

Table 3: Best estimated model parameter values

Parameter Average Standard deviation Quantile 0.025 Quantile 0.5 Quantile 0.975 Mode
β0 (intercept) -34.93 1.67 -38.2 -34.93 -31.68 -34.93
β1 (rainfall) -69.28 8.06 -85.09 -69.28 -53.47 -69.28
β2 (days without rain) 0.07 0.01 0.06 0.07 0.08 0.07
β3 (air temperature) 1.29 0.04 1.19 1.29 1.38 1.29
β4 (wind speed) 0.04 0.05 -0.06 0.04 0.15 0.04
β5 (humidity) -0.02 0.01 -0.04 -0.02 -0.01 -0.02

 (spatially structured) 0.39 0.04 0.35 0.39 0.49 0.36

 (spatially unstructured) 858.29 167.84 558.60 847.83 1215.50 836.57

 (temporally structured) 0.64 0.08 0.51 0.63 0.81 0.62

 (temporally unstructured) 6.33 1.24 4.30 6.19 9.16 5.89

 (interaction spatial and temporal) 1.28 0.03 1.21 1.27 1.35 1.26

Fig. 4:  Scatter plot between the actual number of hotspot and 
predictions from the 2018 model evaluation 
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much lower, indicating the model’s difficulty in capturing patterns 
in extreme cases. This suggests that while the model is effective for 
predicting smaller-scale cases, it struggles to generalize for larger 
or more extreme hotspot counts. However, when viewed from the 
perspective of one location point in Fig. 5, the predicted number of 
hotspot is quite close to the actual value.

Estimation results

 The results of the estimation using the additive and 
interaction models on the explanatory variables provide a potential 
picture of the number of hotspot in 2021, based on previously 
observed patterns. Predictions of the number of hotspot spatially and 
temporally can be seen in Fig. 6. Predictions from this model show a 
fairly high potential in October with 56 hotspot, followed by August 
with 32 hotspot, and September with 28 hotspot. Spatially, Central 
Kalimantan Province is the location with the highest potential for 
hotspot.

CONCLUSION

 The optimal model for predicting hotspot occurrences is 
the additive and interaction model with explanatory variables, which 
achieved a DIC value of 97,799.8. The model demonstrates a low 
prediction error, as indicated by an RMSEP of 7.08 and an AAPE 
of 0.63. While it captures spatial and temporal hotspot patterns, its 
ability to predict extreme events remains limited based on model 
evaluation results. The model indicates a strong spatial variation 
(0.99) and a smaller temporal variation (0.10). Local climate factors, 
such as low rainfall, extended dry periods, high temperatures, and 

low humidity, are identified as key contributors to increased forest 
fire risk. However, further analysis is needed to assess the impact of 
wind speed on hotspot. This analysis contributes to understanding 
forest fire dynamics in Kalimantan and aids in developing effective 
mitigation strategies.
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