
Drought event predictions are a crucial issue across the 
globe for water resources managers and decision makers when 
working to mitigate droughts (Nandgude et al., 2023). Drought 
is a hydro-meteorological phenomenon that has complex natural 
causes and imposes great costs on society, the economy, and the 
environment (Achite et al., 2022). Iraq like many other arid and 
semi-arid countries has been affected climatologically by reduced 
rainfall average amount, from which droughts originate, and 
increasing temperatures due to climate changes (Suliman et al., 
2024). Drought prediction is necessary for crop water demand, 
water management, and electricity generation (Xu et al., 2018; 
Khan et al., 2024).

Drought is hydrologically based on surface water level, 
meteorologically based on the time rainfall remains under certain 
threshold, and agriculturally based on soil moisture reduction 
(Wilhite and Glantz, 1985). Rainfall data plays an essential role in 
the hydrological cycle for drought calculation and prediction (Beck 
et al., 2017; Khajehei et al., 2018). Accurate rainfall data are still 
challenging for hydrologists to obtain from Meteorological Weather 
stations (WSs) due to instrument uncertainties (Sun et al., 2018). 
Rainfall data sets from satellite- and reanalysis-based products are 

another technique globally offered at spatial and temporal scales (Ji 
et al., 2020). PERSIANN (Precipitation Estimation from Remotely 
Sensed Information using Artificial Neural Network), IMERG 
(Integrated Multi-Satellite Retrievals for Global Precipitation 
Measurement), CHIRPS (Climate Hazards Group InfraRed 
Precipitation with Station data), and TRMM (Tropical Measuring 
Mission Multi-Satellite Precipitation) are the common products 
adopted to obtain rainfall data-sets (Das et al., 2024; Sridhara et 
al., 2021). Having these rainfall products could support drought 
calculations and predictions, especially where WSs are sparse.

In this work, the Drought Deciles Index (DDI) has chosen 
among many other indices because of its ease of use as it needs low 
requirements for the calculation to be conducted; however, it is to be 
used then for DDI prediction by Data-driven models. Nevertheless, 
many other indices have employed for drought calculations such 
as Streamflow Drought Index (SDI), effective Reconnaissance 
Drought Index (eRDI), Standardized Precipitation Index (SPI), 
Reconnaissance Drought Index (RDI), and Standardized Soil 
Moisture Index (SSMI) (Tigkas et al., 2022).

Data-driven model has been widely used to solve numerous 
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This work presents a data-driven model, the Artificial Neural Network-Multilayer Perceptron Neural Network (ANN-MLP), for use in 
meteorological drought deciles index (DDI) predictions over various climatic sub-zone. Two types of rainfall data from meteorological weather 
stations (WSs) and satellite-based estimates of PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural 
Network) were adopted. This work considered the calculated DDI (DDI original) from WSs to train and develop the proposed algorithm at 
three sub-zones (ANN-MLP-DDI models). The newly developed model was tested for DDI prediction using PERSIANN, and compared with 
the calculated DDI original from WSs. The results positively revealed that the ANN-MLP-DDI models showed high performance (Correlation 
coefficient r= 0.981) for DDI prediction against the DDI original from WSs. It can be concluded that data-driven models are feasible for drought 
prediction, and this work could help water managers in mitigating drought impacts and in providing information for policy makers

Keywords: Drought deciles index, Meteorological drought, Iraq, Multilayer perceptron, Data driven

ABSTRACT 



467Vol. 26 No. 4

issues of non-linear relationships. It is a robust tool applied in various 
applications in terms of hydrological prediction such as Artificial 
Neural Network-Multilayer Perceptron Neural Network (ANN-
MLP), Random Forest (RF), Adaptive Neuro-Fuzzy Inference 
System (ANFIS), and Support Vector Machine (SVM) (Ditthakit 
et al., 2023; Suliman et al., 2020; Suliman and Darus 2019). For 
example, prediction of the soil moisture and Soil Water-Deficit 
Index (SWDI), which was presented by Zhu et al., (2020) using 
SVM model and WSs data. Random Forest (RF) was considered 
for predicting Standardized Precipitation Evapotranspiration Index 
(SPEI) in Australia by Dikshit et al., (2020). Deo et al., (2017) 
applied Least Square Support Vector Machine (LSSVM) to predict 
Standardized Precipitation Index (SPI) in eastern Australia. Bouaziz 
et al., (2021) have also predicted SPI in Tunisia by using The 
Extreme Learning Machines (ELM). Artificial Neural Networks 
(ANN) was employed to predict Nonlinear Aggregated Drought 
Indexes (NADI) by Barua et al., (2012). Khan et al., (2024) 
employed various Data-driven models for predicting the drought 
index SPEI over different climate-zones of the Kabul River basin. 
A comprehensible comparison for different data-driven models for 
drought prediction has been presented by Achite et al.,  (2022); 
however, the studies presented Data-driven models as dependable 
tool for drought indices predictions. 

This work aimed on assessing a data-driven model’s 
ability, namely ANN-MLP, to predict the meteorological Drought 
Deciles Index (DDI) over different climatic zones of Iraq using 
Weather Stations (WSs) rainfall data and PERSIANN rainfall 
estimates. In order to systematically evaluate the accuracy of the 
new model and its effectiveness; however, this work objectives are: 
1) Calculate DDI (original) based on 47-years of WSs; 2) Adopt 
the data sets used for DDI (original) to build ANN-MLP-DDI; 3) 
Predict DDI (simulated) using PERSIANN rainfall estimates; and 
4) compare the simulated results with the original DDI. Drought 
predictions are relevant for climatologists, hydrologists, and 
decision-makers and are valuable in mitigating drought impacts, 
especially in regions with arid and semi-arid climates.

MATERIALS AND METHODS

Study area and data

Iraq is located in the Middle East with 438,320 km2, and 
faces a decrease in rainfall due to global warming and increased 
summer temperatures. Its area has been dividied by Köppen’s climate 
classification into three different zone: 1) a cold climate (BSk) as 
Zone-A; 2) a warmer climate (BSh) as Zone-B; and 3) a warm desert 
climate (BWh) as Zone-C. These zones contain different amounts of 
meteorological weather stations (WSs) as shown in Fig. 1. Monthly 
rainfall data are available for the period of 1970 to 1917 from only 
22 WSs, which are scarce and inadequately distributed over Iraqi 
Köppen zones (Awchi and Suliman 2021). Consequently, this work 
assessed precipitation estimation from remotely sensed information 
using artificial neural networks-climate data records (PERSIANN) 
as an alternative rainfall data source for drought predictions. 
PERSIANN was developed by the University of California; 
however, it is produced from multi-satellite estimates associated 
with artificial neural network algorithms (Guo et al., 2016; Ashouri 
et al., 2014). PERSIANN provides continuous monthly rainfall 

estimates records starting from 1983-01-01, has been adopted for 
several climate change studies (Zhong et al., 2019), and is avaliable 
on this website (www.ncei.noaa.gov).

Fig 1: Study area

Drought deciles index (DDI) 

The drought deciles index (DDI), which is suggested by 
Gibbs and Maher (1967) in Australia was considered for this work 
due to its simplicity; however, it requires only rainfall data for its 
calculations. DDI was calculated through determination of the 
cumulative frequency distribution; thus, the results were classified 
into 10 deciles, as shown in Table 1 (Mckee et al., 1993; Dikici 
2020; Suliman et al., 2024). The average moving method was 
adopted for DDI measurements at each WS using monthly rainfall 
data. The average value of DDI was then carried out at each zone 
using Eq. (1) (Xia et al., 2018) as:                                                                     

                              (1)

where DDIaverage is the average calculated DDI over each zone using 
a different number of WSs (n), and i is the WS. DDIaverage for each 
zone was considered as output, and the rainfall data from each 
zone were adopted as inputs for training the data-driven model for 
possible PERSIANN assessment. 

Table 1: Drought deciles (DDI) indices

Drought categories Drought decile index (DDI)
Extremely drought (ED) ≤10%
Severely drought (SD) 10%-20%
Moderately drought (MD) 20%-30%
Nearly normal (NN) 30%-70%
Moderately wet (MW) 70%-80%
Very wet (VW) 80%-90%
Extremely wet (EW) ≥90%
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Fig 2: Results of optimal structures of training period at Zone-A

Fig 3: Results of optimal structures of training period at Zone-B

Drought prediction using data-driven model
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Data-driven model

Data-driven models like Artificial Neural Networks (ANN) 
are feasible, and popular applications, which are widely employed 
for drought prediction (Le et al., 2016). Artificial neural networks-
multilayer perceptron (ANN-MLP) feed forward neural network 
was chosen to evaluate its applicability for DDI predictions. This 
work proposed a new algorithm through obtaining the required 
input (from WSs), and outputs (the calculated DDI from WSs) for 
each zone. However, average monthly rainfall data for the available 
WSs (4 WSs at Zone-A, 7 WSs at Zone-B, and 11 WSs at Zone-C) 
for the period (1970-2017) were set as inputs. Furthermore, the 
average DDI from the WSs at each zone were considered as outputs. 
Therefore, the ANN-MLP models were trained using the proposed 
algorithm for each zone and their inputs and outputs were utilized 
as references. 

Consequently, the best trained ANN-MLP-DD models at 
each zone were then tested for DDI prediction adopting PERSIANN 
as an input. The neural network-toolbox of the MATLAB software 
was considered in this work to create ANN-MLP-DDI. It is a flexible 
structure capable of identifying non-linear relationships (Suliman et 
al., 2017). However, the obtained results from the trained models 
were compared using four indicators, which are the correlation 
coefficient (r), goodness of fit (R2), Nash-Sutcliffe (NSE) (Nash 
and Sutcliffe, 1970), and Root Mean Square Error (RMSE) as given 
below. 

 (2)

 (3)

  (4)

  (5)

where, n is the number of time series,  is the calculated DDI 
using WSs,  is the simulated DDI by trained ANN-MLP-DDI, 

 and  are their averages. 

RESULTS AND DISCUSSION

Training drough decile index (DDI) 

In this work, the performance of PERSIANN rainfall 
estimation over Iraqi zones was evaluated by the ANN-MLP-DDI 
model. The implemented algorithm used rainfall data from WS 
from different zones (Zone-A with 4 WSs, Zone-B with 7 WSs, and 
Zone-C with 11 WSs) as inputs and the measured DDI as output 
for training the ANN-MLP-DDI model. The best configuration 
was achieved through training processes using a different number 
of neurons and hidden layers. The best configuration from the 
trained ANN-MLP structures was chosen for DDI predictions using 
PERSIANN rainfall estimation at Zone-A, Zone-B, and Zone-C as 

Fig 4: Results of optimal structures of training period at Zone-C



470 December 2024

shown in Figs. 2, 3, and 4, respectively.

Validation of PERSIANN 

The validation of the PERSIANN rainfall estimation was 
conducted using the optimal configuration of trained ANN-MLP-
DDI. Figs. 5, 6, and 7 show the results of calculated DDI from WSs 
and the predicted DDI from PERSIANN based on ANN-MLP-DDI 
involving four different indicators (r, R2, NS, and RMSE) for each 
zone as well. Generally, PERSIANN showed good performance 
over the three Iraqi zones. For Zone-A, the indicators’ values 
found by PERSIANN were r=0.960, R2=0.814, NS=0.921, and 

RMSE=15.722. For Zone-B, the indicators’ values were r=0.970, 
R2=0.868, NS=0.916, and RMSE=16.088, which are slightly better 
than Zone-A. For Zone-C, the indicators’ values were r=0.981, 
R2=0.893, NS=0.916, and RMSE=15.610, which were the highest 
values. The greatest relationship between WS and PERSIANN was 
found at Zone-A. Moreover, overestimations of the predicted DDI 
by ANN-MLP-DDI were found clearly at Zone-C in years 1995, 
1987-1988, 2001, 2006, and 2013-2014. Zone-B also experienced 
overestimations of the predicted DDI in years 1995, 1988, 2001, 
2006, and 2014; however, ANN-MLP-DDI underestimated in 
Zone-A. PERSIANN performed better at Zone-B and Zone-C with 
low annual precipitation, and showed a slight weakness at Zone-A, 

Fig 5: a) DDI calculations of Zone-A for WSs and PERSIANN data, b) Scatter plot of DDI values using WSs and PERSIANN

Fig 6: a) DDI calculations of Zone-B for WSs and PERSIANN data, b) Scatter plot of DDI values using WSs and PERSIANN

Fig 7: a) DDI calculations of Zone-C for WSs and PERSIANN data, b) Scatter plot of DDI values using WSs and PERSIANN

Drought prediction using data-driven model
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which is in line with the outcomes of by Suliman et al., (2024). In 
general, trained MLP-NN-DDI models of the three zones performed 
satisfactorily in predicting DDI. This result realizes the capability 
of ANN-MLP for prediction and analyzing droughts over semi-arid 
Iraq.

 CONCLUSION

In this work, the potential of data-driven models for 
drought deciles index (DDI) predictions using Meteorological and 
PERSIANN data sets is presented. Monthly precipitation data sets for 
a period of 47 years were obtained from 22-meteorological weather 
stations, and these data sets were used for DDI calculations in data-
sparse areas of Iraq. Three different Köppen zones with different 
climatic characteristics were considered over the study area. The 
ANN-MLP-DDI model was built to predict DDI via the input and 
output variables from DDI calculations based on WSs data sets. 
Additionally, PERSIANN data was also assessed in terms of DDI 
prediction for the developed ANN-MLP-DDI model. The ability of 
DDI prediction was high with an R2 value found by PERSIANN of 
0.981. PERSIANN performed reasonable at Zone-C with its low 
annual precipitation rates and showed some weakness with the high 
annual precipitation rates of Zone-A with 0.81 R2. Generally, the 
outcomes indicate that the ANN-MLP-DDI model was successfully 
established was capable of drought index DDI predictions.
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